## Polar $\sigma$-ideals of compact sets

HTML articles powered by AMS MathViewer

- by Gabriel Debs
- Trans. Amer. Math. Soc.
**347**(1995), 317-338 - DOI: https://doi.org/10.1090/S0002-9947-1995-1267222-4
- PDF | Request permission

## Abstract:

Let $E$ be a metric compact space. We consider the space $\mathcal {K}(E)$ of all compact subsets of $E$ endowed with the topology of the Hausdorff metric and the space $\mathcal {M}(E)$ of all positive measures on $E$ endowed with its natural ${w^{\ast }}$-topology. We study $\sigma$-ideals of $\mathcal {K}(E)$ of the form $I = {I_P} = \{ K \in \mathcal {K}(E):\mu (K) = 0,\;\forall \mu \in P\}$ where $P$ is a given family of positive measures on $E$. If $M$ is the maximal family such that $I = {I_M}$, then $M$ is a band. We prove that several descriptive properties of $I$: being Borel, and having a Borel basis, having a Borel polarity-basis, can be expressed by properties of the band $M$ or of the orthogonal band $Mâ€™$.## References

- G. Debs and J. Saint Raymond,
- Gabriel Debs and Jean Saint-Raymond,
*SĂ©lections borĂ©liennes injectives*, Amer. J. Math.**111**(1989), no.Â 3, 519â€“534 (French). MR**1002011**, DOI 10.2307/2374671
C. Dellacherie and P. A. Meyer, - Colin C. Graham and O. Carruth McGehee,
*Essays in commutative harmonic analysis*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR**550606**, DOI 10.1007/978-1-4612-9976-9 - Robert Kaufman,
*$M$-sets and measures*, Ann. of Math. (2)**135**(1992), no.Â 1, 125â€“130. MR**1147959**, DOI 10.2307/2946565 - Alexander S. Kechris,
*Hereditary properties of the class of closed sets of uniqueness for trigonometric series*, Israel J. Math.**73**(1991), no.Â 2, 189â€“198. MR**1135211**, DOI 10.1007/BF02772948 - Alexander S. Kechris and Alain Louveau,
*Descriptive set theory and the structure of sets of uniqueness*, London Mathematical Society Lecture Note Series, vol. 128, Cambridge University Press, Cambridge, 1987. MR**953784**, DOI 10.1017/CBO9780511758850 - A. S. Kechris, A. Louveau, and W. H. Woodin,
*The structure of $\sigma$-ideals of compact sets*, Trans. Amer. Math. Soc.**301**(1987), no.Â 1, 263â€“288. MR**879573**, DOI 10.1090/S0002-9947-1987-0879573-9 - Alain Louveau,
*Recursivity and capacity theory*, Recursion theory (Ithaca, N.Y., 1982) Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp.Â 285â€“301. MR**791064**, DOI 10.1090/pspum/042/791064 - Alain Louveau,
*Sur la gĂ©nĂ©ration des fonctions borĂ©liennes fortement affines sur un convexe compact mĂ©trisable*, Ann. Inst. Fourier (Grenoble)**36**(1986), no.Â 2, 57â€“68 (French, with English summary). MR**850743**, DOI 10.5802/aif.1047
â€”, - A. Louveau and J. Saint-Raymond,
*Borel classes and closed games: Wadge-type and Hurewicz-type results*, Trans. Amer. Math. Soc.**304**(1987), no.Â 2, 431â€“467. MR**911079**, DOI 10.1090/S0002-9947-1987-0911079-0 - Russell Lyons,
*The size of some classes of thin sets*, Studia Math.**86**(1987), no.Â 1, 59â€“78. MR**887312**, DOI 10.4064/sm-86-1-59-78 - Russell Lyons,
*A new type of sets of uniqueness*, Duke Math. J.**57**(1988), no.Â 2, 431â€“458. MR**962515**, DOI 10.1215/S0012-7094-88-05720-1 - Yiannis N. Moschovakis,
*Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**561709**

*Ensembles dâ€™unicitĂ© et dâ€™unicitĂ© au sens large*, Ann. Inst. Fourier (Grenoble)

**37**(1987), 217-239.

*ProbabilitĂ©s et potentiels*, vol. 3, Hermann, Paris, 1984.

*The descriptive theory of Borel sets*, Springer-Verlag (to appear).

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 317-338 - MSC: Primary 28A12; Secondary 04A15, 28A15, 46A55
- DOI: https://doi.org/10.1090/S0002-9947-1995-1267222-4
- MathSciNet review: 1267222