Polar $\sigma$-ideals of compact sets
Author:
Gabriel Debs
Journal:
Trans. Amer. Math. Soc. 347 (1995), 317-338
MSC:
Primary 28A12; Secondary 04A15, 28A15, 46A55
DOI:
https://doi.org/10.1090/S0002-9947-1995-1267222-4
MathSciNet review:
1267222
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $E$ be a metric compact space. We consider the space $\mathcal {K}(E)$ of all compact subsets of $E$ endowed with the topology of the Hausdorff metric and the space $\mathcal {M}(E)$ of all positive measures on $E$ endowed with its natural ${w^{\ast }}$-topology. We study $\sigma$-ideals of $\mathcal {K}(E)$ of the form $I = {I_P} = \{ K \in \mathcal {K}(E):\mu (K) = 0,\;\forall \mu \in P\}$ where $P$ is a given family of positive measures on $E$. If $M$ is the maximal family such that $I = {I_M}$, then $M$ is a band. We prove that several descriptive properties of $I$: being Borel, and having a Borel basis, having a Borel polarity-basis, can be expressed by properties of the band $M$ or of the orthogonal band $M’$.
-
G. Debs and J. Saint Raymond, Ensembles d’unicité et d’unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 (1987), 217-239.
- Gabriel Debs and Jean Saint-Raymond, Sélections boréliennes injectives, Amer. J. Math. 111 (1989), no. 3, 519–534 (French). MR 1002011, DOI https://doi.org/10.2307/2374671 C. Dellacherie and P. A. Meyer, Probabilités et potentiels, vol. 3, Hermann, Paris, 1984.
- Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606
- Robert Kaufman, $M$-sets and measures, Ann. of Math. (2) 135 (1992), no. 1, 125–130. MR 1147959, DOI https://doi.org/10.2307/2946565
- Alexander S. Kechris, Hereditary properties of the class of closed sets of uniqueness for trigonometric series, Israel J. Math. 73 (1991), no. 2, 189–198. MR 1135211, DOI https://doi.org/10.1007/BF02772948
- Alexander S. Kechris and Alain Louveau, Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, vol. 128, Cambridge University Press, Cambridge, 1987. MR 953784
- A. S. Kechris, A. Louveau, and W. H. Woodin, The structure of $\sigma $-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), no. 1, 263–288. MR 879573, DOI https://doi.org/10.1090/S0002-9947-1987-0879573-9
- Alain Louveau, Recursivity and capacity theory, Recursion theory (Ithaca, N.Y., 1982) Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 285–301. MR 791064, DOI https://doi.org/10.1090/pspum/042/791064
- Alain Louveau, Sur la génération des fonctions boréliennes fortement affines sur un convexe compact métrisable, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 57–68 (French, with English summary). MR 850743 ---, The descriptive theory of Borel sets, Springer-Verlag (to appear).
- A. Louveau and J. Saint-Raymond, Borel classes and closed games: Wadge-type and Hurewicz-type results, Trans. Amer. Math. Soc. 304 (1987), no. 2, 431–467. MR 911079, DOI https://doi.org/10.1090/S0002-9947-1987-0911079-0
- Russell Lyons, The size of some classes of thin sets, Studia Math. 86 (1987), no. 1, 59–78. MR 887312, DOI https://doi.org/10.4064/sm-86-1-59-78
- Russell Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), no. 2, 431–458. MR 962515, DOI https://doi.org/10.1215/S0012-7094-88-05720-1
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A12, 04A15, 28A15, 46A55
Retrieve articles in all journals with MSC: 28A12, 04A15, 28A15, 46A55
Additional Information
Article copyright:
© Copyright 1995
American Mathematical Society