Torsion classes and a universal constraint on Donaldson invariants for odd manifolds
HTML articles powered by AMS MathViewer
- by Selman Akbulut, Tom Mrowka and Yongbin Ruan
- Trans. Amer. Math. Soc. 347 (1995), 63-76
- DOI: https://doi.org/10.1090/S0002-9947-1995-1270658-9
- PDF | Request permission
Abstract:
This paper studies the topology of the gauge group and gives $\bmod 2$ universal relations along Donaldson polynomials of smooth $4$-manifolds, generalizing Y. Ruanβs previous related result.References
- Selman Akbulut, On universal relations in gauge theory, Trans. Amer. Math. Soc. 348 (1996), no.Β 4, 1329β1355. MR 1307997, DOI 10.1090/S0002-9947-96-01394-3
- M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys. 61 (1978), no.Β 2, 97β118. MR 503187, DOI 10.1007/BF01609489
- A. Dold and H. Whitney, Classification of oriented sphere bundles over a $4$-complex, Ann. of Math. (2) 69 (1959), 667β677. MR 123331, DOI 10.2307/1970030
- S. K. Donaldson, Connections, cohomology and the intersection forms of $4$-manifolds, J. Differential Geom. 24 (1986), no.Β 3, 275β341. MR 868974, DOI 10.4310/jdg/1214440551
- S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), no.Β 3, 257β315. MR 1066174, DOI 10.1016/0040-9383(90)90001-Z β, The orientation of Yang-Mills moduli spaces and $4$-manifold topology, J. Differential Geom. 26 (1987), 387-428. S. K. Donaldson and P. Kronheimer, The geometry of $4$-manifolds, Oxford Math. Monographs, 1990.
- Ronald Fintushel and Ronald J. Stern, $\textrm {SO}(3)$-connections and the topology of $4$-manifolds, J. Differential Geom. 20 (1984), no.Β 2, 523β539. MR 788294
- D. Kotschick, Godbillon-Vey invariants for families of foliations, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) Fields Inst. Commun., vol. 35, Amer. Math. Soc., Providence, RI, 2003, pp.Β 131β144. MR 1969272 J. Morgan, Lecture notes.
- Yongbin Ruan, A universal constraint for Donaldson invariants, J. Differential Geom. 35 (1992), no.Β 3, 711β722. MR 1163456 β, Reducible connection on non-simply connected $4$-manifolds (to appear).
- Clifford Henry Taubes, Self-dual connections on $4$-manifolds with indefinite intersection matrix, J. Differential Geom. 19 (1984), no.Β 2, 517β560. MR 755237
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 63-76
- MSC: Primary 57R57; Secondary 57N13, 57R55
- DOI: https://doi.org/10.1090/S0002-9947-1995-1270658-9
- MathSciNet review: 1270658