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BIFURCATION OF MINIMAL SURFACES
IN RIEMANNIAN MANIFOLDS

JURGEN JOST, XIANQING LI-JOST, AND XIAO-WEI PENG

Abstract. We study the bifurcation of closed minimal surfaces in Riemannian

manifolds through higher order variations of the area functional and relate it

to elementary catastrophes.

1. Introduction

In this paper, we study how geodesies and, more generally, minimal subman-
ifolds that are degenerate in the sense that they admit nontrivial Jacobi fields
bifurcate if we vary the underlying Riemannian metric. It turns out that if the
metric is for example real analytic, the bifurcation behaviour can be described
rather explicitly in terms of a polynomial. If suitable conditions are satisfied,

one can detect the elementary catastrophes of catastrophe theory (see [BR]).

A bifurcation and catastrophe analysis so far has been carried out only for
solutions of Plateau's problem in Euclidean space. Beeson-Tromba [BT] de-

tected the cusp catastrophe in the bifurcation of Enneper's minimal surface un-

der changes of the boundary curve. Biich [BU] gave certain conditions on the

WeierstraB representation of a minimal surface that imply the bifurcation be-

haviour of catastrophe theory under changes of the boundary. These conditions

seem to be hard to verify and not very naturally adapted to the problem. X. Li-

Jost [LJ] developed a more natural and general approach by studying foliations
of Riemannian manifolds through minimal surfaces with varying boundary and

using an implicit function theorem argument the basic idea of which goes back

to Lichtenstein [LI].
In the present setting, such foliations do not exist any more because we study

closed minimal submanifolds and vary the underlying Riemannian metric. Nev-

ertheless, we adapt and generalize the implicit function theorem argument of

[LJ].
We hope that the methods of the present paper can be used in the theory of

closed geodesies in order to show the existence of infinitely many of them for

certain nongeneric metrics by perturbing the metric to a generic one where this
is known (see [KL], [HI]).
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2. Notation and preliminaries

N denotes an n-dimensional compact oriented manifold with Riemannian

metric go, M an in-dimensional compact oriented immersed minimal sub-
manifold (without boundary) of N. M is equipped with the metric induced
from go, denoted by y = i*(go), where i : M —> N is the inclusion.
xx, ... , xm denote local coordinates on M. The volume element then is

dvol(M) := d\ol(M, y) = Jdet(yu) dxx A • ■ • A dxm,

and the volume of (M, g) is

(2.1) Yol(M) :=\ol (M,y)= f Jdet(yij)dxx A •• • Adxm.
Jm v

Let <Pf: N —* N be a differentiable family of diffeomorphisms with Oo = id#.

X = ^|i=o is the variation vector field on N. The first variation of Vol(Af)
is given by

(2.2) ^ Vol(*t(Af )')|m> = -J(H,X) dvol(M),

where H is the mean curvature of M in N defined by

H = tr^R,

and B is the second fundamental form of M. M is minimal if and only if

H = 0.
The second variation of Vol(M) is given by

(2.3) ^ Vol (4»,(AO)lr=o = f(JX> x) dvol(M),

where J is the Jacobi operator of M defined by

(2.4) J(X) = -AX + R(X)-B(X).

In order not to have to consider the trivial case of tangential variations (which
do not change the volume of M), we assume that all variational vector fields

X = ^tMi=o satisfy in the sequel for all x e M

X(x)£uxM:=(TxM)L,

i.e., X is always normal to M.

If codim M = 1 and n is a unit normal vector field of M and X = <; n ,

then the second variation can be written as

(2.5) ^ Vol(<D,(A/))|,=0 = Jjm2 - (Ric(n) + |R|2)£2) dvol(M).

The preceding formulae are well known. A proof can be found, e.g., in [LJ].
Obviously, J is a second order elliptic operator on the space of sections of

the normal bundle of M with respect to the induced connection V. In case
codim M = 1, / can be viewed as an elliptic operator on the functions of M.

(see [LA]).
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For technical purposes, we want to identify the normal bundle vM of M

in TV with the normal bundle of the varying submanifold Q>tM in N.

Let exp be the exponential map of TV with respect to the Riemannian metric
go. exp :[/-»/V is a local diffeomorphism, where U is a local neighborhood
of the zero section of vM. Let Ts(vM) be the space of all sections of vM

of Sobolev class Hs. We choose s so large that all sections appearing in the
sequel will be of class C2. For cp e Ts(vM), we define a submanifold of N

by

(2.6) M9 = {expptp{p)\peM}.

For cp small enough with respect to the /F-norm, M9 is diffeomorphic to M

via exp.

Now we try to identify vM and vM9. For any p e M we transfer vpM

via parallel transport P along the geodesic exppttp(p) to TqN, where q =
expp cpip) e M9. P(upM) is transversal to the tangent space TqM9 of M9 at

q. vqM9 is always transversal to TqM9. For any £ e vqM9 , we project £, to

P(vpM) and then parallel transport it back to vpM. We denote this procedure
by

(2.7) f9 : vM9 -» vM.

f9 is an isomorphism. Moreover, f9 depends differentiably on cp.

We denote the mean curvature vector field of M9 by H9 € Ts~2(vM9).

f9(H9) then is a normal vector field on M. We can thus define the operator

As„:r>M)-F-2(Wl/),

P^A^p) :=f9(H9).

We now differentiate Aa at the zero section, using the assumption that M is
minimal, i.e., H = 0. Let ^ € Ts(vM). Then

(2.9) rfA«,(^) = j-tft¥(Ht¥)\tm0 = /(^),

since Ho = 0 (mean curvature of M) and fo = id.

J is a Fredholm operator from Vs(vM) to ri-2(z/M). If Ker/ = {0},

then 7 is an isomorphism. / depends on the Riemannian metric go, and we
therefore also write Jg0 instead of J.

Let Jf' be the space of all Riemannian metrics of Sobolev class H' on N.
We consider the following differentiable map

{2W) A : r(uM) *JT+1 - r~2(uM),

(cp, g)^Ag(tp).

A satisfies A(0, g0) = 0.   If KerJ = {0},   then  §£(0, g0) = ^ASo  is an

isomorphism.

The implicit function theorem implies that there exist a neighborhood U(go)

of go in Jfs+X and a neighborhood V of the zero section in Ts(vM), and a
differentiable map

9 ■ U(g0) -Kc r(uM)
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such that

T(<?(g),g) = 0, for allg€U(g0).

This means (cf. (2.8))

f<p{g),g(H<p{g),g) = 0'

hence H9<g),g = 0, since f9^tg is an isomorphism.
We thus have the following well-known result:

Proposition. If Ker / = {0}, then for any Riemannian metric g close enough

to go there exists a minimal submanifold M9 with respect to g close to M (in
particular diffeomorphic to M).

Here "close" refers to the above Sobolev space ^7S+X.

3. Jacobi fields and bifurcation of minimal immersions

As before, i : M —> N is a minimal immersion with Jacobi operator J.

Since J is elliptic, K := Ker J is a finite dimensional vector space consisting
of smooth vector fields.

On Vs (vM), we have the L2-metric induced from the Riemannian metric
go- We let

Pr : Vs(vM) -» K

be the orthogonal projection w.r.t. this L2-metric. Define

Lg0 :Ys(vM)^Ts-2(vM),

cp* f9(H9) + Pr(cp).

Lemma 1.  Lg0 is a local diffeomorphism.

Proof. Lg0 is continuously differentiable. We compute the derivative at the
zero section. For ip e Vs(i/M)

(3.1) dLg0(ys) = ^-tLg0(tip)\t=0 = Jg0(w) + Pr(y)

Let J* = Ys~2(vM) -» Vs(vM) be the adjoint operator of Jg0. Since Jg0 is

formally self adjoint with respect to the L2 -metric and since the elements of the

kernel of Jg0 are smooth, we may identify Ker Jg0 and Ker J*o. We then have

the orthogonal decomposition

Ts-2(vM) = KerJg0 © lmJg0.

Thus, if dLg0(y/) = 0, then also Jg0(ip) = 0 and Pr(^) = 0. Hence y/ = 0,
and consequently dLg0 is injective. Since Jg0 is a Fredholm operator, dLg0 is

also surjective, and the inverse is also continuous.   □

It follows from Lemma 1 that there exists a neighborhood U(go) of g0 in

Jfs+X with the property that, for any g e U(go), the operator Lg is a local
diffeomorphism. We consider

L : Vs(vM) x jfs+x * Ts-2(uM),

(cp,g)* Lg(cp) = f9,g(H9,g) + Vrga(cp).
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Since L(0, go) = 0, it follows that there exist neighborhoods Ux and U2 of

0 in Ts(vM) and Ys~2(vM), resp., with the property that for any g e U(go)

and any £ € U2,  there exists u e Ux with L(u, g) =c;, i.e.,

(3.2) fu>g(Hu,g) + Prg0(u)=c:.

u depends differentiably on g and £; we write u = w(£, g). Thus, our equa-

tion becomes

(3.3) L{u(Z,g),g)=£.

Our aim now is to find f with

(3.4) Pra(Ktf, *)) = £,

because by (3.2) this is equivalent to

fu,g(Hu,g) = 0 •£=> Hug = Q,

meaning that w is a minimal submanifold with respect to the metric g on N.
It will turn out that this is possible for suitable metrics g.

Some notation: k := dim K, fr,... , & is an orthonormal basis of A^ with
respect to the L2-metric. For £ e K, we write

£ = $>,&       (v,-€R).
1=1

(3.4) is equivalent to
k k

i=i i=i

or

(3.5) (",&) = "1   for i'= 1, ... , k.

We write
"(£, g) = w(^i, • • , ^; g)

and put

Ui := ^j-(0, ... , 0; g0),     ug := ^r(°> ••• ,0; go).

Differentiating (3.5) with respect to Vj yields

(uj, ^) = Sij   for i,j =1, ... , k.

(3.3) is written as

k

(3.6) L(u(vx,... ,vk;g),g) = Y,"&-
i=i

Differentiating (3.6) with respect to vj yields

(3.7) Jg0(uj) + Prg0(uj) =Zj   for j = 1,... , k.

Since £j e K = ker Jg0, we also have

(3-8) Jg0(iJ) + Prg0(ij)=ij.
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By Lemma 1 dLg0 = Jg0 + Prg0 is injective, and comparing (3.7) and (3.8) thus
implies

(3.9) Zj = Uj   forj=l,... ,k.

Lemma 2. For every k = (kx,... ,kk)&Rk, there exists h e TS+X(T*N® T'N)
with

(3.10) (Ugh,Zi) = ki    fori=l,... ,k.

Proof. We let gt = go + th be the variation of go induced by h. For simplicity
of notation, we shall write g instead of gt. From (3.2)

(3.11) (fu,s(Hu,g),Zi) + (Pra(«), fr) = (£, fr).

Differentiating (3.11) with respect to t at /; = 0, i> = 0 gives

£-t(fiu,g(Hu,g), fr) + ^(Prft(tt), fr) = 0.

Hence

(3.12) (ugh,ii) = -(~Hu,g,iiy

We let (jc1, ... , xn) be local coordinates on N such that (xx, ... , xm, 0, ... ,

0) yield local coordinates of M.
We let ex, ... ,em be an orthonormal basis of TM with respect to go, and

write

Thus

r5,7 = flf fl^a^

and
g*? = ajapj.

Then

(3.13) (HUtg0,ii) = (VejeJ,c;i)

since fr is normal to M.
We now let all these constructions depend on t, i.e., we compute the mean

curvature vector of the submanifold defined by u(0, gt). We thus have to com-

pute

_(V^j,fr)|„0.

Here

ef = aj(u(0,gt),gt)-^.

e'j varies in t both because the immersed submanifold u varies and the or-

thonormalization process depends on the metric g,. We shall choose h in such

a way, however, that along M, defined by w(0,go), gt will coincide with go

so that the second dependence on t will play no role.
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Therefore, for such variations gt,

(3.14) dt     ' <=° " dt {'Ofd*'*   J  J    *dx>'*') ,=0

= (/,0(M),fr)+(g^^|(=o^,fr)

where the first term represents the variation of the submanifold and the second
one that of the connection.

Since fr € ker Jg0 and Jg0 is selfadjoint, the first term on the right-hand side
of (3.14) vanishes. The second is

(3.15) j^g^gyS{haSJ + hpda + haps)(J-^}j dvol(M).

By taking the exponential map of the normal bundle vM, we may choose our

coordinates (x1, ... , x") in such a way that

grs(xx,... ,xm,0,... ,0) = Srs    for r,s = m +I, ... ,n,

gas(xx,... ,xm,0,... , 0) = 0      for a = 1,... , m, s - m + 1,... , n.

Of course, the dummy index 5 used here has nothing to do with the Sobolev

space index 5 used throughout the paper.
The expression in (3.15) then reduces to

(3.16) j ^(h^^ + hfis<a- hap,s) ^, ^ dvol(M),

since fr is normal to M. The summation with respect to 5 is only from m +
I, ... , n,  again since fr is normal to M.

We now choose

, f — x*A,-&j-f—rj7   f0Ta,fi = l,...,m,

I 0 otherwise.

Expression (3.16) then becomes

(3.17) "An!   E   (^,&)dvol(M) = -A,,

since g|?,   s = m + 1, ... , n, is an orthonormal basis of vM along M.

Putting everything together, we obtain (ugh, fr) = A,-.   □
We consider the Taylor development of (u, fr). From (3.5)

Vi = (U, fr) = (W(0, go) , fr) + ^(Uj , Zi)Vj
j

+ -z y2(Ulm ' ^i)vivm + higher order terms in v only
(3.18) ll,m

+ (ugh, fr) + ^ Y,(uJsh' W*!/ + 2(u8shh» ft)
7

+ terms of higher order in both v and /i.
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Because «(0, g0) = 0 and Uj = fr (3.18) becomes

0 = (ugh, fr) + -x ̂ 2(Uim> £i)vtvm + higher order terms in v only

(3.19) l'm

+ ~^2(Ujgh, £i)Vj + terms of higher order in both v and h.

j

We write this also as

(3.20) 0 = (ugh,ii) + Qi(u)+Ri(v,h)

where

e'>)=^£(^m,fr)lWH
I ,m

+ higher order terms in v only,

j

+ higher order terms in both v and h.

In order to interpret the terms in (3.19), we differentiate (3.6) twice with respect

to v at v = 0,  obtaining with the help of (3.9)

(3.21) dJg0(£e, im) + Jg0uim + J2(ue>» > $/& = °-
7

Multiplying with fr yields, since J^fr = 0,

(3.22) (ulm , fr) = -(rf/a(fr , im), fr).

Thus (uem, ij) can be expressed by the third variation of volume of our sub-

manifold. Similarly, if all uem vanish, i.e., if the third variation vanishes on
all Jacobi fields, then the (uimn,ij) can be expressed by the fourth variation,

and so on.

We now determine the leading part of Q'(v) as follows:
Let «,  be the smallest positive integer with the property that there exist

positive integers pn, ... , Pik satsifying the following:

If we put

(3.23) Uj = tf'JXj,

then we have with r = (ti ,... , T*)

(3.24) Qi(v) = t?Pi(T) + o(tnii)

with a polynomial P'(t) which is nondegenerate in the sense that

(3.25) ^-P!(t) ^0   for all j = 1,... , k.
dXj

If such n, exists, we say that Q'(v) is nondegenerate.

We call k = (ki, ... , kk) 6 Rk critical if there exists t° = (t? , ... , t£) with

A'+P'(T?,...   ,T°)=0
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and

0(Tl, ...Tk)

If k is not critical, it is called regular. The set of critical k has measure 0,
for example Sard's theorem.

Theorem 1. Suppose that in the Taylor expansion (3.20) all Q'(v), i = 1, ... ,

k, are nondegenerate (as defined after (3.25)). Then for each regular k =

(kx, ... , kk) e Rk there exist e > 0 and a variation gp = go + ph of the

metric go and for 0 < p < e, there exists a neighborhood Up of 0 in Vs (vM)

with the property that the number of minimal submanifolds of N of the form
exp cp for tp £ Up equals the number of solutions of

(3.26) k + P(r) = 0   (P = (P1, ... , Pk)).

Theorem 1 says that, generically, the bifurcation behaviour of the minimal

submanifold M is governed by the solutions of a polynomial equation. As
p —► 0,   Up will shrink to 0.

The assumption of Theorem 1 is satisfied if go is real analytic (which implies

that M is a real analytic submanifold of N) and M is not contained in a one-

parameter family of minimal submanifolds. Namely, in this case the Q'(v) are

real analytic and therefore have Taylor expansions in the variables vx, ... ,vk.
Excluding that M is contained in a family of minimal submanifolds guarantees

that this expansion is nondegenerate as defined in (3.25).

Proof of Theorem 1. We have to determine the number of solutions of (3.20).

The strategy is to replace Q' by P', suitably scaled, and disregard R' in the
first step, where L is chosen in such a way that, up to a scaling factor,

(ugh, fr) =ki   (i'=l,..., k).

An application of the implicit function theorem will show that the number of

solutions is not affected by this simplification of the equation.
As in (3.23) we put

(3.27) Uj = tf'Xij   with xi = (riX,... , xik) € Mk , t = (ti, ... ,tk)eRk,

and

(3.28) h = t?'h.

We now let
.     k k

mi := fr n "j:>   m := n ni
' 7=1 7=1

and
ti = tm<.

Equation (3.28) becomes

(3.29) h = rh,

and (3.27) is

(3.30) Vj = t^-'Xij =: faxij.
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According to Lemma 2, there exists h with

(3.31) (ugh,ii) = ki,     i=l,...,k.

With these conventions, (3.20) becomes

(3.32) 0 = tmki + tmP!(x) + 0(r+1)   (i = 1,... , k)

which is equivalent to

(3.33) 0 = ki + P\x) + 0(t)   (i = l,... ,k).

We consider (3.26)

(3.34) 0 = k + P(x).

Since k is regular, (3.34) has at most finitely many solutions t(i), ... , t(j),
for r = 1, ... , s. The Jacobian satisfies

ap
(3.35) ^rir)^°-

We now write (3.33) as

(3.36) 0 = k + P(x)+S(t, x,h)=: F(t, x,h)

with S(t,x, h) = 0(t) for every fixed (x, h), in particular 5(0, x, h) = 0.

F satisfies

(3.37) F{0,xW,h) = 0   forr=l,...,s

and by (3.35) the Jacobian satisfies

(3.38) ^£(o,T<r>,A)/0   forr=l,... ,s.
ox

The implicit function theorem then implies that there exist functions x^(t) :

(-e' ,e')->TBL,r=l,...,s,   \t\ < e' for some e' > 0, with

(3.39) F(t,xM(t),h) = 0,

which is equivalent to (3.4) (for 1^0), which we wanted to solve, for the

variation of metrics

(3.40) gt = g0 + rh

(see (3.5), (3.18),_(3.20), (3.33)).
We put p := tm and prove the theorem.   D

4. Special cases and catastrophes

It is instructive to consider some special cases of Theorem 1. In this section,

we assume that the space of Jacobi fields of M is one-dimensional, i.e.,

(4.1) fc = dimker7 = 1.

This means that we can drop indices (see, e.g., (3.18)) and that equations like

(3.26) became scalar instead of vectorial.

Equation (3.19) becomes

1 ?
(4.2) 0 = (ugh, i) + -(uvv, i)vL + higher order terms,
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where uvv denotes the second derivative of u with respect to v. The first case

we want to discuss is

(4.3) (Uw,Z)*0,

i.e., the third variation of colume of M in the direction i does not vanish (see

(3.22)).
With p := \(uvv, i), h = t2h, v = tx, k = (ugh, i),  (4.2) becomes

(4.4) 0 = kt2+pt2u2 + t2S(t,u, h)

with
S(t,v,h) = 0(t)   for fixed v, h

as before.
For 17^ 0, this again is equivalent to

(4.5) Q = k + pv2 + S(t,v, h).

Thus for k ^ 0, depending on the sign of |, there either exist two solutions of

(4.5) or none for sufficiently small \t\. This implies for the variation of metrics

gp = go + ph that either for p > 0 there exist two minimal submanifolds, with

respect to the metric gp near M, and none for p < 0, or vice versa, i.e., two
solutions for p < 0 and none for p > 0.

This is the simplest possible nontrivial bifurcation process, namely the one
for the roots of a cubic polynomial depending on a parameter.

We now discuss the case, again under assumption (4.1), where the third vari-

ation vanishes, but the fourth one does not.

(4.6) (uvv,i) = 0,

(4.7) (uvvv ,i)?0.

Recalling again «(0, go) = 0,   uv = i,  (3.19) becomes

1 i
(4.8) 0 = (ugh, i) + -Auvvv, i)v* + (uvgh, i)v + higher order terms.

We now choose a two parameter variation of go in the directions hx and h2.

We assume that hx and h2 satisfy

(i) (ughx,i)?0.

(ii) (uvgh2, fr ^ 0, but (ugh2,i) = 0.

(i) can be achieved by Lemma 2.

We now put v = tx, h = t3ahx + t2ph2 and rewrite (4.8) as

(4.9) 0 = t3((ughi, i)a + (uvgh2, i)px + l-(uvvv, £)t3 + S(t,x,hu h2))

where again S(t, x, hi, h2) = 0(t) for any fixed x, hi, h2. Theorem 1 implies
that, for 17^ 0, the solution behavior is qualitatively described by the roots of

(4.10) 0 = (Ughi, i)a + (uvgh2, i)px + !(«„„„ , £)t3.

This is precisely the so-called cusp catastrophe (with a, p as parameters). In

particular, locally there exist at most three minimal submanifolds in a neigh-
borhood of M with respect to the metric

go + t3ahi + t2ph2.
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This follows with the reasoning of the proof of Theorem 1. It should now be

clear how to detect the other elementary catastrophes (see [BR]) in the present

setting.
We remark that an explicit example for the occurrence of a cusp catastrophe

in minimal surface theory is Plateau's problem for Enneper's surface. This was

described in [BT]. Of course, the setting of Plateau's problem is different from

ours. We present here a systematic development so that in specific examples
one only has to compute the polynomial P(t) in (3.26) in order to be able to

describe the bifurcation behavior.
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