## Homology operations on a new infinite loop space

HTML articles powered by AMS MathViewer

- by Burt Totaro PDF
- Trans. Amer. Math. Soc.
**347**(1995), 99-110 Request permission

## Abstract:

Boyer et al. [1] defined a new infinite loop space structure on the space ${M_0} = {\prod _{n \geqslant 1}}K({\mathbf {Z}},2n)$ such that the total Chern class map $BU \to {M_0}$ is an infinite loop map. This is a sort of Riemann-Roch theorem without denominators: for example, it implies Fulton-MacPherson’s theorem that the Chern classes of the direct image of a vector bundle $E$ under a given finite covering map are determined by the rank and Chern classes of $E$. We compute the Dyer-Lashof operations on the homology of ${M_0}$. They provide a new explanation for Kochman’s calculation of the operations on the homology of $BU$, and they suggest a possible characterization of the infinite loop structure on ${M_0}$.## References

- Charles P. Boyer, H. Blaine Lawson Jr., Paulo Lima-Filho, Benjamin M. Mann, and Marie-Louise Michelsohn,
*Algebraic cycles and infinite loop spaces*, Invent. Math.**113**(1993), no. 2, 373–388. MR**1228130**, DOI 10.1007/BF01244311 - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - Albrecht Dold and René Thom,
*Quasifaserungen und unendliche symmetrische Produkte*, Ann. of Math. (2)**67**(1958), 239–281 (German). MR**97062**, DOI 10.2307/1970005 - Stanley O. Kochman,
*Homology of the classical groups over the Dyer-Lashof algebra*, Trans. Amer. Math. Soc.**185**(1973), 83–136. MR**331386**, DOI 10.1090/S0002-9947-1973-0331386-2 - H. Blaine Lawson Jr. and Marie-Louise Michelsohn,
*Algebraic cycles, Bott periodicity, and the Chern characteristic map*, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 241–263. MR**974339**, DOI 10.1090/pspum/048/974339 - Saunders MacLane,
*Categories for the working mathematician*, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR**0354798** - J. Peter May,
*Simplicial objects in algebraic topology*, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0222892** - J. Peter May,
*A general algebraic approach to Steenrod operations*, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153–231. MR**0281196**
—, - Graeme Segal,
*The multiplicative group of classical cohomology*, Quart. J. Math. Oxford Ser. (2)**26**(1975), no. 103, 289–293. MR**380770**, DOI 10.1093/qmath/26.1.289 - N. E. Steenrod,
*Cohomology operations*, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR**0145525**

*The homology of*${E_\infty }$

*spaces*, The Homology of Iterated Loop Spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin, 1976, pp. 3-68. —, ${E_\infty }$

*ring spaces and*${E_\infty }$

*ring spectra*, Lecture Notes in Math., vol. 577, Springer-Verlag, Berlin, 1977.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 99-110 - MSC: Primary 55S12; Secondary 55P47, 57T25
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273541-8
- MathSciNet review: 1273541