A new measure of growth for countable-dimensional algebras. I
HTML articles powered by AMS MathViewer
- by John Hannah and K. C. O’Meara PDF
- Trans. Amer. Math. Soc. 347 (1995), 111-136 Request permission
Abstract:
A new dimension function on countable-dimensional algebras (over a field) is described. Its dimension values lie in the unit interval [0, 1]. Since the free algebra on two generators turns out to have dimension $0$ (although conceivably some Noetherian algebras might have positive dimension!), this dimension function promises to distinguish among algebras of infinite $GK$dimension.References
- K. R. Goodearl, von Neumann regular rings, 2nd ed., Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991. MR 1150975
- K. R. Goodearl, P. Menal, and J. Moncasi, Free and residually Artinian regular rings, J. Algebra 156 (1993), no. 2, 407–432. MR 1216477, DOI 10.1006/jabr.1993.1082
- John Hannah and K. C. O’Meara, A new measure of growth for countable-dimensional algebras, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 223–227. MR 1215312, DOI 10.1090/S0273-0979-1993-00427-0
- N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc. 1 (1950), 352–355. MR 36223, DOI 10.1090/S0002-9939-1950-0036223-1 —, Structure of rings, 2nd ed., Amer. Math. Soc., Providence, RI, 1964.
- Arun Vinayak Jategaonkar, Ore domains and free algebras, Bull. London Math. Soc. 1 (1969), 45–46. MR 238881, DOI 10.1112/blms/1.1.45
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- K. C. O’Meara, A new measure of growth for countable-dimensional algebras. II, J. Algebra 172 (1995), no. 1, 214–240. MR 1320631, DOI 10.1006/jabr.1995.1060
- K. C. O’Meara, C. I. Vinsonhaler, and W. J. Wickless, Identity-preserving embeddings of countable rings into $2$-generator rings, Rocky Mountain J. Math. 19 (1989), no. 4, 1095–1105. MR 1039546, DOI 10.1216/RMJ-1989-19-4-1095
- D. V. Tjukavkin, Rings all of whose one-sided ideals are generated by idempotents, Comm. Algebra 17 (1989), no. 5, 1193–1198. MR 993398, DOI 10.1080/00927878908823783
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 111-136
- MSC: Primary 16P90; Secondary 16E50, 16S15, 16S50
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282887-9
- MathSciNet review: 1282887