Cohomologically symplectic spaces: toral actions and the Gottlieb group
HTML articles powered by AMS MathViewer
- by Gregory Lupton and John Oprea
- Trans. Amer. Math. Soc. 347 (1995), 261-288
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282893-4
- PDF | Request permission
Abstract:
Aspects of symplectic geometry are explored from a homotopical viewpoint. In particular, the question of whether or not a given toral action is Hamiltonian is shown to be independent of geometry. Rather, a new homotopical obstruction is described which detects when an action is Hamiltonian. This new entity, the ${\lambda _{\hat \alpha }}$-invariant, allows many results of symplectic geometry to be generalized to manifolds which are only cohomologically symplectic in the sense that there is a degree $2$ cohomology class which cups to a top class. Furthermore, new results in symplectic geometry also arise from this homotopical approach.References
- Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
- C. Allday and V. Puppe, Bounds on the torus rank, Transformation groups, Poznań 1985, Lecture Notes in Math., vol. 1217, Springer, Berlin, 1986, pp. 1–10. MR 874166, DOI 10.1007/BFb0072811
- M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1–28. MR 721448, DOI 10.1016/0040-9383(84)90021-1 M. Audin, The topology of torus actions on symplectic manifolds, Progress in Math., 93, Birkhäuser, 1991.
- Michèle Audin, Exemples de variétés presque complexes, Enseign. Math. (2) 37 (1991), no. 1-2, 175–190 (French). MR 1115749
- Augustin Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), no. 2, 174–227 (French). MR 490874, DOI 10.1007/BF02566074
- Chal Benson and Carolyn S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513–518. MR 976592, DOI 10.1016/0040-9383(88)90029-8
- Chal Benson and Carolyn S. Gordon, Kähler structures on compact solvmanifolds, Proc. Amer. Math. Soc. 108 (1990), no. 4, 971–980. MR 993739, DOI 10.1090/S0002-9939-1990-0993739-4
- Israel Berstein, On covering spaces and Lie group actions, Conference on algebraic topology in honor of Peter Hilton (Saint John’s, Nfld., 1983) Contemp. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1985, pp. 11–13. MR 789788, DOI 10.1090/conm/037/789788
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- William Browder and Wu Chung Hsiang, $G$-actions and the fundamental group, Invent. Math. 65 (1981/82), no. 3, 411–424. MR 643560, DOI 10.1007/BF01396626
- Eugenio Calabi, On the group of automorphisms of a symplectic manifold, Problems in analysis (Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 1–26. MR 0350776
- Andrew Casson and Daniel Henry Gottlieb, Fibrations with compact fibres, Amer. J. Math. 99 (1977), no. 1, 159–189. MR 436144, DOI 10.2307/2374013
- P. E. Conner and Frank Raymond, Holomorphic Seifert fiberings, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 299, Springer, Berlin, 1972, pp. 124–204. MR 0590802
- P. E. Conner and Frank Raymond, Injective operations of the toral groups. II, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 299, Springer, Berlin, 1972, pp. 109–123. MR 0646079
- P. E. Conner and Frank Raymond, Injective operations of the toral groups, Topology 10 (1971), 283–296. MR 281218, DOI 10.1016/0040-9383(71)90021-8
- Luis A. Cordero, M. Fernández, and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), no. 3, 375–380. MR 842431, DOI 10.1016/0040-9383(86)90050-9
- Andreas Floer, Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math. 42 (1989), no. 4, 335–356. MR 990135, DOI 10.1002/cpa.3160420402
- Theodore Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1–8. MR 131883, DOI 10.2307/1969889
- Hansjörg Geiges, Symplectic structures on $T^2$-bundles over $T^2$, Duke Math. J. 67 (1992), no. 3, 539–555. MR 1181312, DOI 10.1215/S0012-7094-92-06721-4
- Viktor L. Ginzburg, Some remarks on symplectic actions of compact groups, Math. Z. 210 (1992), no. 4, 625–640. MR 1175727, DOI 10.1007/BF02571819 —, New generalizations of Poincaré’s geometric theorem, Funct. Anal. Appl. 21 (1987), 100-106.
- Viktor L. Ginzburg and Alan Weinstein, Lie-Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc. 5 (1992), no. 2, 445–453. MR 1126117, DOI 10.1090/S0894-0347-1992-1126117-8 R. Gompf, Some new symplectic $4$-manifolds, preprint 1993.
- D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840–856. MR 189027, DOI 10.2307/2373248
- Daniel Henry Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23–50. MR 309111, DOI 10.1090/S0002-9947-1972-0309111-X
- Daniel Henry Gottlieb, The trace of an action and the degree of a map, Trans. Amer. Math. Soc. 293 (1986), no. 1, 381–410. MR 814928, DOI 10.1090/S0002-9947-1986-0814928-9
- Daniel Henry Gottlieb, Lifting actions in fibrations, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 657, Springer, Berlin, 1978, pp. 217–254. MR 513551
- Daniel Henry Gottlieb, Splitting off tori and the evaluation subgroup of the fundamental group, Israel J. Math. 66 (1989), no. 1-3, 216–222. MR 1017162, DOI 10.1007/BF02765893
- Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729–756. MR 275424, DOI 10.2307/2373349
- Stephen Halperin, Rational homotopy and torus actions, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 293–306. MR 787835
- Kyung Bai Lee and Frank Raymond, Maximal torus actions on solvmanifolds and double coset spaces, Internat. J. Math. 2 (1991), no. 1, 67–76. MR 1082837, DOI 10.1142/S0129167X91000065
- Gregory Lupton and John Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), no. 1-3, 193–207. MR 1255930, DOI 10.1016/0022-4049(94)90142-2
- Dusa McDuff, Examples of simply-connected symplectic non-Kählerian manifolds, J. Differential Geom. 20 (1984), no. 1, 267–277. MR 772133
- Dusa McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 (1988), no. 2, 149–160. MR 1029424, DOI 10.1016/0393-0440(88)90001-0
- Dusa McDuff, Symplectic diffeomorphisms and the flux homomorphism, Invent. Math. 77 (1984), no. 2, 353–366. MR 752824, DOI 10.1007/BF01388450
- G. D. Mostow, Factor spaces of solvable groups, Ann. of Math. (2) 60 (1954), 1–27. MR 61611, DOI 10.2307/1969700
- Peter J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1986. MR 836734, DOI 10.1007/978-1-4684-0274-2
- Kaoru Ono, Equivariant projective imbedding theorem for symplectic manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 2, 381–392. MR 945884
- Kaoru Ono, Obstruction to circle group actions preserving symplectic structure, Hokkaido Math. J. 21 (1992), no. 1, 99–102. MR 1153755, DOI 10.14492/hokmj/1381413269
- John Oprea, The category of nilmanifolds, Enseign. Math. (2) 38 (1992), no. 1-2, 27–40. MR 1175516
- John Oprea, A homotopical Conner-Raymond theorem and a question of Gottlieb, Canad. Math. Bull. 33 (1990), no. 2, 219–229. MR 1060377, DOI 10.4153/CMB-1990-035-6
- MichałSadowski, Equivariant splittings associated with smooth toral actions, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, pp. 183–192. MR 1133901, DOI 10.1007/BFb0084746
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467–468. MR 402764, DOI 10.1090/S0002-9939-1976-0402764-6
- Robert B. Warfield Jr., Nilpotent groups, Lecture Notes in Mathematics, Vol. 513, Springer-Verlag, Berlin-New York, 1976. MR 0409661, DOI 10.1007/BFb0080152
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 261-288
- MSC: Primary 57S25; Secondary 57S15, 58F05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282893-4
- MathSciNet review: 1282893