Residue classes of Lagrangian subbundles and Maslov classes
HTML articles powered by AMS MathViewer
- by Haruo Suzuki
- Trans. Amer. Math. Soc. 347 (1995), 189-202
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282897-1
- PDF | Request permission
Abstract:
For Lagrangian subbundles with singularities in symplectic vector bundles, explicit formulas of relation between their residue classes and Maslov classes outside singularities are obtained. Then a Lagrangian subbundle with singularity is constructed where all possible Maslov classes are nonzero but residue classes vanish for dimension $> 2$. Moreover, a Lagrangian immersion with singularity is constructed, where the similar property for the associated Maslov classes and residue classes is shown.References
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304, DOI 10.1007/978-1-4757-3951-0
- Shiing Shen Chern and James Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974), 48–69. MR 353327, DOI 10.2307/1971013
- Franz W. Kamber and Philippe Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Mathematics, Vol. 493, Springer-Verlag, Berlin-New York, 1975. MR 0402773, DOI 10.1007/BFb0081558
- Daniel Lehmann, Variétés stratifiées $C^\infty$: intégration de Čech-de Rham, et théorie de Chern-Weil, Geometry and topology of submanifolds, II (Avignon, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 205–248 (French). MR 1068742
- D. Lehmann, Classes caractéristiques residuelles, Differential geometry and its applications (Brno, 1989) World Sci. Publ., Teaneck, NJ, 1990, pp. 85–108 (French, with English summary). MR 1062009
- John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR 820463
- J.-M. Morvan and L. Niglio, Classes caractéristiques des couples de sous-fibrés lagrangiens, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 193–209 (French, with English summary). MR 850751, DOI 10.5802/aif.1055
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI 10.2307/1969485
- Haruo Suzuki, Chern-Simons-Maslov classes of some symplectic vector bundles, Proc. Amer. Math. Soc. 117 (1993), no. 2, 541–546. MR 1124152, DOI 10.1090/S0002-9939-1993-1124152-X
- Izu Vaisman, Symplectic geometry and secondary characteristic classes, Progress in Mathematics, vol. 72, Birkhäuser Boston, Inc., Boston, MA, 1987. MR 932470, DOI 10.1007/978-1-4757-1960-4
- André Weil, Sur les théorèmes de de Rham, Comment. Math. Helv. 26 (1952), 119–145 (French). MR 50280, DOI 10.1007/BF02564296
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 189-202
- MSC: Primary 57R20; Secondary 58F05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282897-1
- MathSciNet review: 1282897