Generalizations of Browder’s degree theory
HTML articles powered by AMS MathViewer
- by Shou Chuan Hu and Nikolaos S. Papageorgiou
- Trans. Amer. Math. Soc. 347 (1995), 233-259
- DOI: https://doi.org/10.1090/S0002-9947-1995-1284911-6
- PDF | Request permission
Abstract:
The starting point of this paper is the recent important work of F. E. Browder, who extended degree theory to operators of monotone type. The degree function of Browder is generalized to maps of the form $T + f + G$, where $T$ is maximal monotone, $f$ is of class ${(S)_ + }$ bounded, and $G( \cdot )$ is an u.s.c. compact multifunction. It is also generalized to maps of the form $f + {N_G}$, with $f$ of class ${(S)_ + }$ and ${N_G}$ the Nemitsky operator of a multifunction $G(x,r)$ satisfying various types of sign conditions. Some examples are also included to illustrate the abstract results.References
- Herbert Amann and Stanley A. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39–54. MR 346601, DOI 10.1007/BF01178975
- Haïm Brézis and Felix E. Browder, Some properties of higher order Sobolev spaces, J. Math. Pures Appl. (9) 61 (1982), no. 3, 245–259 (1983). MR 690395
- Felix E. Browder, Nonlinear eigenvalue problems and Galerkin approximations, Bull. Amer. Math. Soc. 74 (1968), 651–656. MR 226453, DOI 10.1090/S0002-9904-1968-11979-2
- Felix E. Browder, Existence theorems for nonlinear partial differential equations, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 1–60. MR 0269962 —, Nonlinear operators and nonlinear equations in Banach spaces, Proc. Sympos. Pure Math., vol. 18, part 2, Amer. Math. Soc., Providence, RI, 1975.
- Felix E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Publ. Math. Res. Center Univ. Wisconsin, No. 27, Academic Press, New York, 1971, pp. 425–500. MR 0394340
- Felix E. Browder, Degree of mapping for nonlinear mappings of monotone type, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6, i, 1771–1773. MR 699437, DOI 10.1073/pnas.80.6.1771
- Felix E. Browder, Degree of mapping for nonlinear mappings of monotone type: densely defined mapping, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 8, i, 2405–2407. MR 700932, DOI 10.1073/pnas.80.8.2405
- Felix E. Browder, Degree of mapping for nonlinear mappings of monotone type: densely defined mapping, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 8, i, 2405–2407. MR 700932, DOI 10.1073/pnas.80.8.2405
- Felix E. Browder, The degree of mapping, and its generalizations, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982) Contemp. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1983, pp. 15–40. MR 729503, DOI 10.1090/conm/021/729503 —, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 1-39.
- Felix E. Browder, Degree theory for nonlinear mappings, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 203–226. MR 843560, DOI 10.1090/pspum/045.1/843560
- Arrigo Cellina, Approximation of set valued functions and fixed point theorems, Ann. Mat. Pura Appl. (4) 82 (1969), 17–24 (English, with Italian summary). MR 263046, DOI 10.1007/BF02410784
- D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), no. 1, 41–63. MR 664341 N. Dunford and J. Schwartz, Linear operators. I, Wiley, New York, 1958.
- L. Führer, Ein elementarer analytischer Beweis zur Eindeutigkeit des Abbildungsgrades im $R^{n}$, Math. Nachr. 54 (1972), 259–267 (German). MR 317317, DOI 10.1002/mana.19720540117
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Nikolaos S. Papageorgiou, On measurable multifunctions with applications to random multivalued equations, Math. Japon. 32 (1987), no. 3, 437–464. MR 914749
- S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36–39 (Russian). MR 0192184
- S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1970/71), 173–180. MR 306873, DOI 10.4064/sm-37-2-173-180
- Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, DOI 10.1137/0315056
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732, DOI 10.1007/978-1-4612-4838-5
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 233-259
- MSC: Primary 47H11; Secondary 35J60, 35K55, 47H05, 47N20, 58C30
- DOI: https://doi.org/10.1090/S0002-9947-1995-1284911-6
- MathSciNet review: 1284911