Generalizations of Browder’s degree theory
Authors:
Shou Chuan Hu and Nikolaos S. Papageorgiou
Journal:
Trans. Amer. Math. Soc. 347 (1995), 233-259
MSC:
Primary 47H11; Secondary 35J60, 35K55, 47H05, 47N20, 58C30
DOI:
https://doi.org/10.1090/S0002-9947-1995-1284911-6
MathSciNet review:
1284911
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The starting point of this paper is the recent important work of F. E. Browder, who extended degree theory to operators of monotone type. The degree function of Browder is generalized to maps of the form $T + f + G$, where $T$ is maximal monotone, $f$ is of class ${(S)_ + }$ bounded, and $G( \cdot )$ is an u.s.c. compact multifunction. It is also generalized to maps of the form $f + {N_G}$, with $f$ of class ${(S)_ + }$ and ${N_G}$ the Nemitsky operator of a multifunction $G(x,r)$ satisfying various types of sign conditions. Some examples are also included to illustrate the abstract results.
- Herbert Amann and Stanley A. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39–54. MR 346601, DOI https://doi.org/10.1007/BF01178975
- Haïm Brézis and Felix E. Browder, Some properties of higher order Sobolev spaces, J. Math. Pures Appl. (9) 61 (1982), no. 3, 245–259 (1983). MR 690395
- Felix E. Browder, Nonlinear eigenvalue problems and Galerkin approximations, Bull. Amer. Math. Soc. 74 (1968), 651–656. MR 226453, DOI https://doi.org/10.1090/S0002-9904-1968-11979-2
- Felix E. Browder, Existence theorems for nonlinear partial differential equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 1–60. MR 0269962 ---, Nonlinear operators and nonlinear equations in Banach spaces, Proc. Sympos. Pure Math., vol. 18, part 2, Amer. Math. Soc., Providence, RI, 1975.
- Felix E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 425–500. MR 0394340
- Felix E. Browder, Degree of mapping for nonlinear mappings of monotone type, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6, i, 1771–1773. MR 699437, DOI https://doi.org/10.1073/pnas.80.6.1771
- Felix E. Browder, Degree of mapping for nonlinear mappings of monotone type: densely defined mapping, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 8, i, 2405–2407. MR 700932, DOI https://doi.org/10.1073/pnas.80.8.2405
- Felix E. Browder, Degree of mapping for nonlinear mappings of monotone type: densely defined mapping, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 8, i, 2405–2407. MR 700932, DOI https://doi.org/10.1073/pnas.80.8.2405
- Felix E. Browder, The degree of mapping, and its generalizations, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982) Contemp. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1983, pp. 15–40. MR 729503, DOI https://doi.org/10.1090/conm/021/729503 ---, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 1-39.
- Felix E. Browder, Degree theory for nonlinear mappings, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 203–226. MR 843560
- Arrigo Cellina, Approximation of set valued functions and fixed point theorems, Ann. Mat. Pura Appl. (4) 82 (1969), 17–24 (English, with Italian summary). MR 263046, DOI https://doi.org/10.1007/BF02410784
- D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9) 61 (1982), no. 1, 41–63. MR 664341 N. Dunford and J. Schwartz, Linear operators. I, Wiley, New York, 1958.
- L. Führer, Ein elementarer analytischer Beweis zur Eindeutigkeit des Abbildungsgrades im $R^{n}$, Math. Nachr. 54 (1972), 259–267 (German). MR 317317, DOI https://doi.org/10.1002/mana.19720540117
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Nikolaos S. Papageorgiou, On measurable multifunctions with applications to random multivalued equations, Math. Japon. 32 (1987), no. 3, 437–464. MR 914749
- S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36–39 (Russian). MR 0192184
- S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1970/71), 173–180. MR 306873, DOI https://doi.org/10.4064/sm-37-2-173-180
- Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, DOI https://doi.org/10.1137/0315056
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47H11, 35J60, 35K55, 47H05, 47N20, 58C30
Retrieve articles in all journals with MSC: 47H11, 35J60, 35K55, 47H05, 47N20, 58C30
Additional Information
Keywords:
Degree function,
monotone operator,
operator of class <IMG WIDTH="48" HEIGHT="41" ALIGN="MIDDLE" BORDER="0" SRC="images/img1.gif" ALT="${(S)_ + }$">,
Nemitsky operator,
sign condition,
multifunction,
approximate selector,
normalization,
additivity on domain,
homotopy invariance,
compact embedding
Article copyright:
© Copyright 1995
American Mathematical Society