On the embedded primary components of ideals. IV
HTML articles powered by AMS MathViewer
- by William Heinzer, L. J. Ratliff and Kishor Shah
- Trans. Amer. Math. Soc. 347 (1995), 701-708
- DOI: https://doi.org/10.1090/S0002-9947-1995-1249882-7
- PDF | Request permission
Abstract:
The results in this paper expand the fundamental decomposition theory of ideals pioneered by Emmy Noether. Specifically, let $I$ be an ideal in a local ring $(R,M)$ that has $M$ as an embedded prime divisor, and for a prime divisor $P$ of $I$ let $I{C_P}(I)$ be the set of irreducible components $q$ of $I$ that are $P$-primary (so there exists a decomposition of $I$ as an irredundant finite intersection of irreducible ideals that has $q$ as a factor). Then the main results show: (a) $I{C_M}(I) = \cup \{ I{C_M}(Q);Q\;{\text {is a }}\operatorname {MEC} {\text { of }}I\}$ ($Q$ is a MEC of $I$ in case $Q$ is maximal in the set of $M$-primary components of $I$); (b) if $I = \cap \{ {q_i};i = 1, \ldots ,n\}$ is an irredundant irreducible decomposition of $I$ such that ${q_i}$ is $M$-primary if and only if $i = 1, \ldots ,k < n$, then $\cap \{ {q_i};i = 1, \ldots ,k\}$ is an irredundant irreducible decomposition of a MEC of $I$, and, conversely, if $Q$ is a MEC of $I$ and if $\cap \{ {Q_j};j = 1, \ldots ,m\}$ (resp., $\cap \{ {q_i};i = 1, \ldots ,n\}$) is an irredundant irreducible decomposition of $Q$ (resp., $I$) such that ${q_1}, \ldots ,{q_k}$ are the $M$-primary ideals in $\{ {q_1}, \ldots ,{q_n}\}$, then $m = k$ and $( \cap \{ {q_i};i = k + 1, \ldots ,n\} ) \cap ( \cap \{ {Q_j};j = 1, \ldots ,m\} )$ is an irredundant irreducible decomposition of $I$; (c) $I{C_M}(I) = \{ q,q\;{\text {is maximal in the set of ideals that contain }}I\;{\text {and do not contain }}I:M\}$; (d) if $Q$ is a MEC of $I$, then $I{C_M}(Q) = \{ q;Q \subseteq q \in I{C_M}(I)\}$; (e) if $J$ is an ideal that lies between $I$ and an ideal $Q \in I{C_M}(I)$, then $J = \cap \{ q;J \subseteq q \in I{C_M}(I)\}$; and, (f) there are no containment relations among the ideals in $\cup \{ I{C_P}(I)$; $P$ is a prime divisor of $I$}.References
- William Heinzer, L. J. Ratliff Jr., and Kishor Shah, On the embedded primary components of ideals. I, J. Algebra 167 (1994), no. 3, 724–744. MR 1287067, DOI 10.1006/jabr.1994.1209
- William Heinzer, L. J. Ratliff Jr., and Kishor Shah, On the embedded primary components of ideals. II, J. Pure Appl. Algebra 101 (1995), no. 2, 139–156. MR 1348032, DOI 10.1016/0022-4049(94)00018-E
- William Heinzer, L. J. Ratliff Jr., and Kishor Shah, On the embedded primary components of ideals. III, J. Algebra 171 (1995), no. 1, 272–293. MR 1314101, DOI 10.1006/jabr.1995.1012
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Emmy Noether, Idealtheorie in Ringbereichen, Math. Ann. 83 (1921), no. 1-2, 24–66 (German). MR 1511996, DOI 10.1007/BF01464225
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 701-708
- MSC: Primary 13E05; Secondary 13H99
- DOI: https://doi.org/10.1090/S0002-9947-1995-1249882-7
- MathSciNet review: 1249882