A free-boundary problem for the heat equation arising in flame propagation
HTML articles powered by AMS MathViewer
- by Luis A. Caffarelli and Juan L. Vázquez
- Trans. Amer. Math. Soc. 347 (1995), 411-441
- DOI: https://doi.org/10.1090/S0002-9947-1995-1260199-7
- PDF | Request permission
Abstract:
We introduce a new free-boundary problem for the heat equation, of interest in combustion theory. It is obtained in the description of laminar flames as an asymptotic limit for high activation energy. The problem asks for the determination of a domain in space-time, $\Omega \subset {{\mathbf {R}}^n} \times (0,T)$, and a function $u(x,t) \geqslant 0$ defined in $\Omega$, such that ${u_t} = \Delta u$ in $\Omega ,\;u$ takes certain initial conditions, $u(x,0) = {u_0}(x)$ for $x \in {\Omega _0} = \partial \Omega \cap \{ t = 0\}$, and two conditions are satisfied on the free boundary $\Gamma = \partial \Omega \cap \{ t > 0\} :u = 0$ and ${u_\nu } = - 1$, where ${u_\nu }$ denotes the derivative of $u$ along the spatial exterior normal to $\Gamma$. We approximate this problem by means of a certain regularization on the boundary and prove the existence of a weak solution under suitable assumptions on the initial data.References
- H. Berestycki, L. A. Caffarelli, and L. Nirenberg, Uniform estimates for regularization of free boundary problems, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 567–619. MR 1044809
- Henri Berestycki and Bernard Larrouturou, A semi-linear elliptic equation in a strip arising in a two-dimensional flame propagation model, J. Reine Angew. Math. 396 (1989), 14–40. MR 988546
- H. Berestycki, B. Larrouturou, and P.-L. Lions, Multi-dimensional travelling-wave solutions of a flame propagation model, Arch. Rational Mech. Anal. 111 (1990), no. 1, 33–49. MR 1051478, DOI 10.1007/BF00375699 H. Berestycki, B. Larrouturou, and L. Nirenberg, A nonlinear elliptic problem describing the propagation of a curved premixed flame, NATO Advanced Research Workshop on Mathematical Modelling in Combustion and Related Topics. M. Bertsch, D. Hilhorst, and C. Schmidt-Lainé, The well-posedness of a free-boundary problem arising in combustion theory, Preprint 21 Dép. Math., E. N. S. Lyon, France, 1989.
- Claude-Michel Brauner, Alessandra Lunardi, and Claudine Schmidt-Lainé, Stabilité et instabilité des ondes stationnaires d’un problème de détonation à deux phases, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 11, 697–700 (French, with English summary). MR 1081628
- J. D. Buckmaster and G. S. S. Ludford, Theory of laminar flames, Electronic & Electrical Engineering Research Studies: Pattern Recognition & Image Processing Series, vol. 2, Cambridge University Press, Cambridge-New York, 1982. MR 666866, DOI 10.1017/CBO9780511569531
- D. Hilhorst and J. Hulshof, An elliptic-parabolic problem in combustion theory: convergence to travelling waves, Nonlinear Anal. 17 (1991), no. 6, 519–546. MR 1124123, DOI 10.1016/0362-546X(91)90062-6 D. S. Stewart, Transition to detonation in a model problem, J. Mech. Theor. Appl. 4 (1985), 103-137. D. S. Stewart and G. S. S. Ludford, Fast deflagration waves, J. Mech. Theor. Appl. 3 (1983), 463-487.
- Ya. B. Zel′dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The mathematical theory of combustion and explosions, Consultants Bureau [Plenum], New York, 1985. Translated from the Russian by Donald H. McNeill. MR 781350, DOI 10.1007/978-1-4613-2349-5
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 411-441
- MSC: Primary 35K57; Secondary 35R35, 80A22, 80A25
- DOI: https://doi.org/10.1090/S0002-9947-1995-1260199-7
- MathSciNet review: 1260199