Applications of simplicial $M$-sets to proper and strong shape theories
HTML articles powered by AMS MathViewer
- by L. J. Hernández Paricio
- Trans. Amer. Math. Soc. 347 (1995), 363-409
- DOI: https://doi.org/10.1090/S0002-9947-1995-1267224-8
- PDF | Request permission
Abstract:
In this paper we have tried to reduce the classical classification problems for spaces and maps of the proper category and of the strong shape category to similar problems in the homotopy category of simplicial sets or in the homotopy category of simplicial $M$-sets, which $M$ is the monoid of proper selfmaps of the discrete space $\mathbb {N}$ of nonnegative integers. Given a prospace (prosimplicial set) $Y$, we have constructed a simplicial set ${\overline {\mathcal {P}} ^R}Y$ such that the Hurewicz homotopy groups of ${\overline {\mathcal {P}} ^R}Y$ are the Grossman homotopy groups of $Y$. For the case of the end prospace $Y = \varepsilon X$ of a space $X$, we obtain Brown’s proper homotopy groups; and for the Vietoris prospace $Y = VX$ (introduced by Porter) of a compact metrisable space $X$, we have Quigley’s inward groups. The simplicial subset ${\overline {\mathcal {P}} ^R}Y$ of a tower $Y$ contains, as a simplicial subset, the homotopy limit ${\lim ^R}Y$. The inclusion ${\lim ^R}Y \to {\overline {\mathcal {P}} ^R}Y$ induces many relations between the homotopy and (co)homology invariants of the prospace $Y$. Using the functor ${\overline {\mathcal {P}} ^R}$ we prove Whitehead theorems for proper homotopy, prohomotopy, and strong shape theories as a particular case of the standard Whitehead theorem. The algebraic condition is given in terms of Brown’s proper groups, Grossman’s homotopy groups and Quigley’s inward groups, respectively. In all these cases an equivalent cohomological condition can be given by taking twisted coefficients. The "singular" homology groups of ${\overline {\mathcal {P}} ^R}Y$ provide homology theories for the Brown, Grossman and Quigley homotopy groups that satisfy Hurewicz theorems in the corresponding settings. However, there are other homology theories for the homotopy groups above satisfying other Hurewicz theorems. We also analyse the notion of $\overline {\mathcal {P}}$-movable prospace. For a $\overline {\mathcal {P}}$-movable tower we prove easily (without ${\lim ^1}$ functors) that the strong homotopy groups agree with the Čech homotopy groups and the Grossman homotopy groups are determined by the Čech (or strong) groups by the formula $^G{\pi _q} = \overline {\mathcal {P}} \check {\pi }_q$. This implies that the algebraic condition of the Whitehead theorem can be given in terms of strong (Čech) groups when the condition of $\overline {\mathcal {P}}$-movability is included. We also study homology theories for the strong (Steenrod) homotopy groups which satisfy Hurewicz theorems but in general do not agree with the corresponding Steenrod-Sitnikov homology theories.References
- M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin-New York, 1969. MR 0245577, DOI 10.1007/BFb0080957
- Hans Joachim Baues, Algebraic homotopy, Cambridge Studies in Advanced Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989. MR 985099, DOI 10.1017/CBO9780511662522 —, Foundations of proper homotopy theory, preprint (1992). D. Bassendoski, Whitehead and Hurewicz theorems in proper homotopy theory, Fakultät für Mathematik, Universität Bielefeld, 1977.
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Edward M. Brown, Proper homotopy theory in simplicial complexes, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp. 41–46. MR 0356041
- Zvonko Čerin, On various relative proper homotopy groups, Tsukuba J. Math. 4 (1980), no. 2, 177–202. MR 623435, DOI 10.21099/tkbjm/1496159172
- Jean-Marc Cordier, Homologie de Steenrod-Sitnikov et limite homotopique algébrique, Manuscripta Math. 59 (1987), no. 1, 35–52 (French, with English summary). MR 901248, DOI 10.1007/BF01171263
- J.-M. Cordier and T. Porter, Shape theory, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1989. Categorical methods of approximation. MR 1000348
- David A. Edwards and Harold M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Mathematics, Vol. 542, Springer-Verlag, Berlin-New York, 1976. MR 0428322, DOI 10.1007/BFb0081083
- J. I. Extremiana, L. J. Hernández, and M. T. Rivas, Proper CW-complexes: a category for the study of proper homotopy, Collect. Math. 39 (1988), no. 2, 149–179. MR 1027685
- J. I. Extremiana, L. J. Hernández, and M. T. Rivas, An isomorphism theorem of Hurewicz type in the proper homotopy category, Fund. Math. 132 (1989), no. 3, 195–214. MR 1002408, DOI 10.4064/fm-132-3-195-214 F. T. Farrell and J. B. Wagoner, Infinite matrices in algebraic $K$-theory and topology, Comment. Math. Helv. 47 (1972), 474-502.
- F. T. Farrell and J. B. Wagoner, Infinite matrices in algebraic $K$-theory and topology, Comment. Math. Helv. 47 (1972), 474–501. MR 319185, DOI 10.1007/BF02566819
- F. T. Farrell, L. R. Taylor, and J. B. Wagoner, The Whitehead theorem in the proper category, Compositio Math. 27 (1973), 1–23. MR 334226
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125, DOI 10.1007/978-3-642-85844-4 A. Grothendieck, Technique de descente et théorémes d’existence en géométrie algébrique I-IV, Séminaire Bourbaki, Exposeés 190, 195, 212, 221, 1959-60, 1960-61.
- Jerrold W. Grossman, A homotopy theory of pro-spaces, Trans. Amer. Math. Soc. 201 (1975), 161–176. MR 356039, DOI 10.1090/S0002-9947-1975-0356039-8
- Jerrold W. Grossman, Homotopy classes of maps between pro-spaces, Michigan Math. J. 21 (1974), 355–362 (1975). MR 367984
- Jerrold W. Grossman, Homotopy groups of pro-spaces, Illinois J. Math. 20 (1976), no. 4, 622–625. MR 413097 L. J. Hernández, Embedding theorems for categories of prosets and progroups, preprint, 1993.
- Luis J. Hernández and Timothy Porter, Proper pointed maps from $\textbf {R}^{n+1}$ to a $\sigma$-compact space, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 3, 457–462. MR 932669, DOI 10.1017/S0305004100065051
- L. J. Hernández and T. Porter, Global analogues of the Brown-Grossman proper homotopy groups of an end, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 3, 483–496. MR 957253, DOI 10.1017/S0305004100065671
- Y. Kodama and A. Koyama, Hurewicz isomorphism theorem for Steenrod homology, Proc. Amer. Math. Soc. 74 (1979), no. 2, 363–367. MR 524318, DOI 10.1090/S0002-9939-1979-0524318-6
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic, Universitext, Springer-Verlag, New York, 1994. A first introduction to topos theory; Corrected reprint of the 1992 edition. MR 1300636, DOI 10.1007/978-1-4612-0927-0
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- J. D. P. Meldrum, Near-rings and their links with groups, Research Notes in Mathematics, vol. 134, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 854275
- Carol V. Meyer, Approximation filtrante de diagrammes finis par Pro-$C$, Ann. Sci. Math. Québec 4 (1980), no. 1, 35–57 (French). MR 574833
- Bodo Pareigis, Kategorien und Funktoren, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1969 (German). MR 0265427, DOI 10.1007/978-3-663-12190-9
- T. Porter, Čech homotopy. I, J. London Math. Soc. (2) 6 (1973), 429–436. MR 321080, DOI 10.1112/jlms/s2-6.3.429
- Timothy Porter, Stability results for topological spaces, Math. Z. 140 (1974), 1–21. MR 385846, DOI 10.1007/BF01218642
- Timothy Porter, Abstract homotopy theory in procategories, Cahiers Topologie Géom. Différentielle 17 (1976), no. 2, 113–124. MR 445496
- Timothy Porter, Coherent prohomotopical algebra, Cahiers Topologie Géom. Différentielle 18 (1977), no. 2, 139–179. MR 470033 —, Coherent pro-homotopy theory, Cahiers Topologie Géom. Différentielle Catégoriques, vol. 19, Univ. Picardie, 1978, pp. 3-45.
- Timothy Porter, Čech and Steenrod homotopy and the Quigley exact couple in strong shape and proper homotopy theory, J. Pure Appl. Algebra 24 (1982), no. 3, 303–312. MR 656853, DOI 10.1016/0022-4049(82)90049-4
- Günter Pilz, Near-rings, North-Holland Mathematics Studies, No. 23, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. The theory and its applications. MR 0469981
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432, DOI 10.1007/BFb0097438
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- J. Brendan Quigley, An exact sequence from the $n$th to the $(n-1)$-st fundamental group, Fund. Math. 77 (1973), no. 3, 195–210. MR 331379, DOI 10.4064/fm-77-3-195-210
- Martin Raussen, Hurewicz isomorphism and Whitehead theorems in pro-categories, Arch. Math. (Basel) 30 (1978), no. 2, 153–164. MR 494090, DOI 10.1007/BF01226035 L. C. Siebenmann, The obstruction of finding a boundary for an open manifold of dimension greater than five, Thesis, 1965.
- L. C. Siebenmann, Infinite simple homotopy types, Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32 (1970), 479–495. MR 0287542, DOI 10.1016/S1385-7258(70)80052-X
- N. E. Steenrod, Regular cycles of compact metric spaces, Ann. of Math. (2) 41 (1940), 833–851. MR 2544, DOI 10.2307/1968863
- Arne Strøm, The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972), 435–441. MR 321082, DOI 10.1007/BF01304912
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 363-409
- MSC: Primary 55N05; Secondary 55P55, 55Q07
- DOI: https://doi.org/10.1090/S0002-9947-1995-1267224-8
- MathSciNet review: 1267224