Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains
HTML articles powered by AMS MathViewer
- by Ji Ye Yu
- Trans. Amer. Math. Soc. 347 (1995), 587-614
- DOI: https://doi.org/10.1090/S0002-9947-1995-1276938-5
- PDF | Request permission
Abstract:
The purpose of this paper is to study the existence of weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains in ${\mathbb {C}^n}$ and to explore the connections between the limits and the Levi invariants. The main result extends Graham’s result on strongly pseudoconvex domains to a large class of weakly pseudoconvex domains.References
- Brian E. Blank, Da Shan Fan, David Klein, Steven G. Krantz, Daowei Ma, and Myung-Yull Pang, The Kobayashi metric of a complex ellipsoid in $\textbf {C}^2$, Experiment. Math. 1 (1992), no. 1, 47–55. MR 1181086
- Eric Bedford and Sergey Pinchuk, Domains in $\textbf {C}^{n+1}$ with noncompact automorphism group, J. Geom. Anal. 1 (1991), no. 3, 165–191. MR 1120679, DOI 10.1007/BF02921302
- Kang-Tae Kim, Domains with noncompact automorphism groups, Recent developments in geometry (Los Angeles, CA, 1987) Contemp. Math., vol. 101, Amer. Math. Soc., Providence, RI, 1989, pp. 249–262. MR 1034985, DOI 10.1090/conm/101/1034985
- David W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429–466. MR 978601, DOI 10.1007/BF01215657
- David Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), no. 3, 529–586. MR 769163, DOI 10.2307/1971087 J. Chen, Estimates of the invariant metrics on convex domains, Purdue University Ph.D. Dissertation, 1989.
- Sanghyun Cho, A lower bound on the Kobayashi metric near a point of finite type in $\textbf {C}^n$, J. Geom. Anal. 2 (1992), no. 4, 317–325. MR 1170478, DOI 10.1007/BF02934584
- John P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. MR 657241, DOI 10.2307/2007015 —, Several complex variables and geometry, CRC Press, Boca Raton, 1992.
- Klas Diederich and John E. Fornæss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), no. 3, 575–592. MR 554386, DOI 10.2307/1971240
- Jean-Pierre Demailly, Un exemple de fibré holomorphe non de Stein à fibre $\textbf {C}^{2}$ ayant pour base le disque ou le plan, Invent. Math. 48 (1978), no. 3, 293–302 (French). MR 508989, DOI 10.1007/BF01390248
- Klas Diederich, Gregor Herbort, and Takeo Ohsawa, The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann. 273 (1986), no. 3, 471–478. MR 824434, DOI 10.1007/BF01450734
- Klas Diederich and Ingo Lieb, Konvexität in der komplexen Analysis, Birkhäuser, Boston, Mass., 1981 (German). Neue Ergebnisse und Methoden. [New results and methods]; DMV Seminar, 2. MR 698605, DOI 10.1007/978-3-0348-5153-4
- Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 350069, DOI 10.1007/BF01406845
- Franc Forstnerič and Jean-Pierre Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), no. 2, 239–252. MR 919504, DOI 10.1007/BF01461721
- Sidney Frankel, Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 183–208. MR 1128543, DOI 10.1090/pspum/052.2/1128543
- John Erik Fornæss and Nessim Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), no. 3, 633–655. MR 1016439, DOI 10.1215/S0012-7094-89-05830-4
- Robert E. Greene and Steven G. Krantz, Stability of the Carathéodory and Kobayashi metrics and applications to biholomorphic mappings, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 77–93. MR 740874, DOI 10.1090/pspum/041/740874
- Robert E. Greene and Steven G. Krantz, Deformation of complex structures, estimates for the $\bar \partial$ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), no. 1, 1–86. MR 644667, DOI 10.1016/0001-8708(82)90028-7
- Ian Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $C^{n}$ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219–240. MR 372252, DOI 10.1090/S0002-9947-1975-0372252-8
- Gregor Herbort, Invariant metrics and peak functions on pseudoconvex domains of homogeneous finite diagonal type, Math. Z. 209 (1992), no. 2, 223–243. MR 1147815, DOI 10.1007/BF02570831
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Monique Hakim and Nessim Sibony, Quelques conditions pour l’existence de fonctions pics dans des domaines pseudoconvexes, Duke Math. J. 44 (1977), no. 2, 399–406 (French). MR 457784
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- M. Kalka, A deformation theorem for the Kobayashi metric, Proc. Amer. Math. Soc. 59 (1976), no. 2, 245–251. MR 412481, DOI 10.1090/S0002-9939-1976-0412481-4
- Kang-Tae Kim, Complete localization of domains with noncompact automorphism groups, Trans. Amer. Math. Soc. 319 (1990), no. 1, 139–153. MR 986028, DOI 10.1090/S0002-9947-1990-0986028-X
- Shoshichi Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416. MR 414940, DOI 10.1090/S0002-9904-1976-14018-9
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- J. J. Kohn, Boundary behavior of $\delta$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523–542. MR 322365 N. Kerzman and J. Rosay, Fonctions plurisubharmonique d’exhaustion bornées et domaines taut, Math. Ann. 257 (1982), 171-184.
- Steven G. Krantz, Function theory of several complex variables, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1162310
- Steven G. Krantz, The boundary behavior of the Kobayashi metric, Rocky Mountain J. Math. 22 (1992), no. 1, 227–233. MR 1159955, DOI 10.1216/rmjm/1181072807 —, Geometric analysis and function spaces, CBMS Lecture Notes, A.M.S., 1993.
- Steven G. Krantz, Invariant metrics and the boundary behavior of holomorphic functions on domains in $\textbf {C}^n$, J. Geom. Anal. 1 (1991), no. 2, 71–97. MR 1113372, DOI 10.1007/BF02938115 K. Kim and J. Yu, Boundary behavior of the Bergman curvature in the strongly pseudoconvex polyhedral domains, preprint.
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145, DOI 10.24033/bsmf.1948
- Jeffery D. McNeal, Local geometry of decoupled pseudoconvex domains, Complex analysis (Wuppertal, 1991) Aspects Math., E17, Friedr. Vieweg, Braunschweig, 1991, pp. 223–230. MR 1122183 A. Noell, Peak functions for pseudoconvex domains, Several Complex Variables: Proceedings of the Mittag-Leffler Institute, 1987-1988, Annals of Mathematics Studies, Princeton, NJ, 1993.
- Sergey Pinchuk, The scaling method and holomorphic mappings, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 151–161. MR 1128522, DOI 10.1090/pspum/052.1/1128522
- I. P. Ramadanov, Some applications of the Bergman kernel to geometrical theory of functions, Complex analysis (Warsaw, 1979) Banach Center Publ., vol. 11, PWN, Warsaw, 1983, pp. 275–286. MR 737768 H. Royden and P. Wong, Carathéodory and Kobayashi metric on convex domains, preprint, 1983.
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- Nessim Sibony, Some aspects of weakly pseudoconvex domains, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 199–231. MR 1128526, DOI 10.1090/pspum/052.1/1128526 —, A class of hyperbolic manifolds, Ann. of Math. Studies 10 (1981), 257-272.
- Ji Ye Yu, Multitypes of convex domains, Indiana Univ. Math. J. 41 (1992), no. 3, 837–849. MR 1189914, DOI 10.1512/iumj.1992.41.41044 —, Invariant metrics and finite type conditions, Proc. Amer. Math. Soc. (to appear). —, Stability of the Bergman kernel and metric, preprint. —, Peak functions on weakly pseudoconvex domains, preprint. —, Geometric analysis on weakly pseudoconvex domains, Dissertation, Washington University, 1993.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 587-614
- MSC: Primary 32H15
- DOI: https://doi.org/10.1090/S0002-9947-1995-1276938-5
- MathSciNet review: 1276938