An optimal condition for the LIL for trigonometric series
HTML articles powered by AMS MathViewer
- by I. Berkes
- Trans. Amer. Math. Soc. 347 (1995), 515-530
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282883-1
- PDF | Request permission
Abstract:
By a classical theorem (Salem-Zygmund [6], Erdős-Gàl [3]), if $({n_k})$ is a sequence of positive integers satisfying ${n_{k + 1}}/{n_k} \geqslant q > 1\;(k = 1,2, \ldots )$ then $(\cos {n_k}x)$ obeys the law of the iterated logarithm, i.e., (1) \[ \lim \sup \limits _{N \to \infty } {(N\log \log N)^{ - 1/2}}\sum \limits _{k \leqslant N} {\cos {n_k}x = 1\quad {\text {a}}{\text {.e}}{\text {.}}} \] It is also known (Takahashi [7, 8]) that the Hadamard gap condition ${n_{k + 1}}/{n_k} \geqslant q > 1$ can be essentially weakened here but the problem of finding the precise gap condition for the LIL (1) has remained open. In this paper we find, using combinatorial methods, an optimal gap condition for the upper half of the LIL, i.e., the inequality $\leqslant 1$ in (1).References
- I. Berkes, Critical LIL behavior of the trigonometric system, Trans. Amer. Math. Soc. 338 (1993), no. 2, 553–585. MR 1099352, DOI 10.1090/S0002-9947-1993-1099352-2
- P. Erdős, On trigonometric sums with gaps, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 37–42 (English, with Russian summary). MR 145264
- Noboru Matsuyama and Shigeru Takahashi, On the law of the iterated logarithm, Sci. Rep. Kanazawa Univ. 3 (1955), no. 1, 21–26. MR 77795
- W. Feller, The general form of the so-called law of the iterated logarithm, Trans. Amer. Math. Soc. 54 (1943), 373–402. MR 9263, DOI 10.1090/S0002-9947-1943-0009263-7
- R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 333–338. MR 22263, DOI 10.1073/pnas.33.11.333
- R. Salem and A. Zygmund, La loi du logarithme itéré pour les séries trigonométriques lacunaires, Bull. Sci. Math. (2) 74 (1950), 209–224 (French). MR 39828
- Shigeru Takahashi, On the law of the iterated logarithm for lacunary trigonometric series, Tohoku Math. J. (2) 24 (1972), 319–329. MR 330905, DOI 10.2748/tmj/1178241542
- Shigeru Takahashi, On the law of the iterated logarithm for lacunary trigonometric series. II, Tohoku Math. J. (2) 27 (1975), no. 3, 391–403. MR 440269, DOI 10.2748/tmj/1203529250
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 515-530
- MSC: Primary 42A32; Secondary 42A55
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282883-1
- MathSciNet review: 1282883