Tensor product of difference posets
HTML articles powered by AMS MathViewer
- by Anatolij Dvurečenskij
- Trans. Amer. Math. Soc. 347 (1995), 1043-1057
- DOI: https://doi.org/10.1090/S0002-9947-1995-1249874-8
- PDF | Request permission
Abstract:
A tensor product of difference posets, which generalize orthoalgebras and orthomodular posets, is defined, and an equivalent condition is presented. In particular, we show that a tensor product for difference posets with a sufficient system of probability measures exists, as well as a tensor product of any difference poset and any Boolean algebra, which is isomorphic to a bounded Boolean power.References
- Dirk Aerts and Ingrid Daubechies, Physical justification for using the tensor product to describe two quantum systems as one joint system, Helv. Phys. Acta 51 (1978), no. 5-6, 661–675 (1979). MR 542798
- Paul Busch, Pekka J. Lahti, and Peter Mittelstaedt, The quantum theory of measurement, Lecture Notes in Physics. New Series m: Monographs, vol. 2, Springer-Verlag, Berlin, 1991. MR 1176754, DOI 10.1007/978-3-662-13844-1
- Gianpiero Cattaneo and Giuseppe Nisticò, Brouwer-Zadeh posets and three-valued Łukasiewicz posets, Fuzzy Sets and Systems 33 (1989), no. 2, 165–190. MR 1024221, DOI 10.1016/0165-0114(89)90239-X
- Anatolij Dvurečenskij and Sylvia Pulmannová, Difference posets, effects, and quantum measurements, Internat. J. Theoret. Phys. 33 (1994), no. 4, 819–850. MR 1286161, DOI 10.1007/BF00672820 A. Dvurečenskij and B. Riečan, Decomposition of measures on orthoalgebras and difference posets, Internat. J. Theoret. Phys. 33 (1994), 1403-1418.
- David J. Foulis, Coupled physical systems, Found. Phys. 19 (1989), no. 7, 905–922. MR 1013911, DOI 10.1007/BF01889305
- D. J. Foulis and M. K. Bennett, Tensor products of orthoalgebras, Order 10 (1993), no. 3, 271–282. MR 1267193, DOI 10.1007/BF01110548
- D. J. Foulis, R. J. Greechie, and G. T. Rüttimann, Filters and supports in orthoalgebras, Internat. J. Theoret. Phys. 31 (1992), no. 5, 789–807. MR 1162623, DOI 10.1007/BF00678545 D. Foulis and P. Pták, On the tensor product of a Boolean algebra and an orthoalgebra, preprint 1993.
- D. J. Foulis and C. H. Randall, Empirical logic and tensor products, Interpretations and foundations of quantum theory (Marburg, 1979) Grundlagen Exakt. Naturwiss., vol. 5, Bibliographisches Inst., Mannheim, 1981, pp. 9–20. MR 683888
- Gudrun Kalmbach, Orthomodular lattices, London Mathematical Society Monographs, vol. 18, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 716496
- M. Kläy, C. Randall, and D. Foulis, Tensor products and probability weights, Internat. J. Theoret. Phys. 26 (1987), no. 3, 199–219. MR 892411, DOI 10.1007/BF00668911
- František Kôpka, $D$-posets of fuzzy sets, Tatra Mt. Math. Publ. 1 (1992), 83–87. Fuzzy sets (Liptovský Mikuláš, 1992). MR 1230466
- František Kôpka and Ferdinand Chovanec, $D$-posets, Math. Slovaca 44 (1994), no. 1, 21–34. MR 1290269
- Robin H. Lock, The tensor product of generalized sample spaces which admit a unital set of dispersion-free weights, Found. Phys. 20 (1990), no. 5, 477–498. MR 1060619, DOI 10.1007/BF01883236
- Tamás Matolcsi, Tensor product of Hilbert lattices and free orthodistributive product of orthomodular lattices, Acta Sci. Math. (Szeged) 37 (1975), no. 3-4, 263–272. MR 388122 M. Navara and P. Pták, Difference posets and orthoalgebras, submitted. P. Pták and S. Pulmannová, Orthomodular structures as quantum logics, Kluwer, Dordrecht, Boston and London, 1991.
- Sylvia Pulmannová, Tensor product of quantum logics, J. Math. Phys. 26 (1985), no. 1, 1–5. MR 776118, DOI 10.1063/1.526784
- C. H. Randall and D. J. Foulis, Operational statistics and tensor products, Interpretations and foundations of quantum theory (Marburg, 1979) Grundlagen Exakt. Naturwiss., vol. 5, Bibliographisches Inst., Mannheim, 1981, pp. 21–28. MR 683889 R. Sikorski, Boolean algebras, Springer-Verlag, Berlin, Heidelberg and New York, 1964.
- Alexander Wilce, Tensor product of frame manuals, Internat. J. Theoret. Phys. 29 (1990), no. 8, 805–814. MR 1070453, DOI 10.1007/BF00675098
- Antonio Zecca, On the coupling of logics, J. Mathematical Phys. 19 (1978), no. 6, 1482–1485. MR 503035, DOI 10.1063/1.523816
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1043-1057
- MSC: Primary 03G12; Secondary 06C15, 81P10
- DOI: https://doi.org/10.1090/S0002-9947-1995-1249874-8
- MathSciNet review: 1249874