A NOTE ON NORM INEQUALITIES FOR INTEGRAL OPERATORS ON CONES

KECHENG ZHOU

Abstract. Norm inequalities for the Riemann-Liouville operator \(R_rf(x) = \int_{(0,x)} \Delta^{-1}_V(x-t)f(t)dt \) and Weyl operator \(W_rf(x) = \int_{(x,\infty)} \Delta^{-1}_V(t-x)f(t)dt \) on cones in \(R^d \) have been obtained in the case \(r \geq 1 \) [7]. In this note, these inequalities are further extended to the case \(r < 1 \). The question of whether the Hardy operator \(Hf(x) = \int_{(0,x)} f(t)dt \) on cones is bounded from \(L^p(\Delta^0_V(x)) \) to \(L^q(\Delta^0_V(x)) \) (\(q < p \)) is also solved.

Let \(V \) be a homogeneous cone in \(R^d \). \(V \) defines a partial ordering in \(R^d \) in such a way that \(x <_V y \) if and only if \(y - x \in V \). The cone interval \((a, b) \) is thus given by \((a, b) = \{x \in V: a <_V x <_V b\} \). For \(x \in V \) we define \(\Delta_V(x) = \int_{(0,x)} dy \).

Let \(G(V) \) denote the automorphism group of \(V \), and let \(\Sigma = \{x \in V: |x| = 1\} \), \(\sigma_0 = \sigma_0(V) = \inf\{\alpha: \int_{[x]} \Delta^\alpha(t')dt' < \infty\} \) and \(\sigma(V) = \max(-1, \sigma_0) \). It is known (see [4, 7]) that if \(\alpha > \sigma(V) \), then \(\int_{(0,x)} \Delta^\alpha_V(t)dt \) is finite for all \(x \in V \) and homogeneous of order \(\alpha + 1 \) so that

\[
\int_{(0,x)} \Delta^\alpha_V(t)dt = c\Delta^{\alpha+1}_V(x).
\]

The dual \(V^* \) of \(V \) is defined as \(V^* = \{x \in R^d: x \cdot y > 0, \forall y \in V, y \neq 0\} \). Clearly, \(V^* \) is also a cone. It is known that \(V^{**} = V \).

The *-function on \(V \) is the mapping \(x \rightarrow x^* \) such that \(x^* = -\text{grad} \log(\phi(x)) \), where \(\phi(x) = \int_{V^*} e^{x^*y}dy \) is the characteristic function of \(V \). It is known (see [2, 6]) that the *-function is a one-to-one mapping from \(V \) onto \(V^* \). Let \(G(V \rightarrow V^*) \) be the group of linear transformations mapping \(V \) onto \(V^* \). A homogeneous cone \(V \) is said to be a domain of positivity if there is an element \(S \in G(V \rightarrow V^*) \) so that \(S \) is symmetric and positive definite. It can be shown (see [6, 7]) that for a domain of positivity \(V \), \(x <_V y \) if and only if \(y^* <_{V^*} x^* \).

In this note, we shall continue to consider the Riemann-Liouville operator

\[
R_rf(x) = \int_{(0,x)} \Delta^{-1}_V(x-t)f(t)dt
\]

and Weyl operator

\[
W_rf(x) = \int_{(x,\infty)} \Delta^{-1}_V(t-x)f(t)dt
\]
on cones on R^d. It is worth noting that the Riemann-Liouville operators whose kernels are complex power functions associated with the cone V were extensively studied in [1], although they are different from the Riemann-Liouville operator we shall study here.

Theorem 1. Let V be a domain of positivity in R^d. If $1 \leq p \leq q < \infty$, $r - 1 > \sigma(V)$, and $\gamma < -\sigma(V)(1 + \frac{a}{p}) - \sigma(V^*) + q\left(\frac{1}{p} - r + 1\right) - 3$, then for any $f: V \to R^+$,

$$\left(\int_V \Delta_V^{-q}(x) (R_r f(x))^q \, dx\right)^{1/q} \leq c \left(\int_V f^p(x) \Delta_V^{-(r-1)p + (\gamma + 1)p/q - 1}(x) \, dx\right)^{1/p}. \tag{1}$$

We show (1) in the case $r \geq 1$ (see [7]). Since $-1 \leq \sigma(V) \leq 0$ for any cone V, Theorem 1 extends the result to the case $0 < r < 1$. It is also worth noting that $\Delta_V(x) \to 0$ as x approaches the boundary of V. Hence, the kernel of R_r approaches infinity as t approaches any point on the boundary of $x - V$ in the case $r - 1 > \sigma(V)$. In the one dimensional case, where $V = (0, \infty)$, $\sigma(V) = -1$, $r > 0$, Theorem 1 gives the boundedness of the Riemann-Liouville operator on the half line.

In the proof of Theorem 1 we shall deal with integrals on the cone of the form

$$\int_{(0,x)} \Delta_V^\alpha(x-t) \Delta_V^\beta(t) \, dt$$

and

$$\int_{(x,\infty)} \Delta_V^\alpha(t-x) \Delta_V^\beta(t) \, dt$$

where $\alpha, \beta < 0$. The following two lemmas prove that, under certain conditions on α and β, the integrals are finite for each $x \in V$ so that they can be “integrated” out. When restricted to the one dimensional case, these two lemmas give the best results.

Lemma 1. Let V be a homogeneous cone and let

$$g(x) = \int_{(0,x)} \Delta_V^\alpha(x-t) \Delta_V^\beta(t) \, dt, \quad x \in V.$$

If $\alpha > \sigma(V)$ and $\beta > \sigma(V)$, then $g(x)$ is finite for each $x \in V$ and is homogeneous of order $\alpha + \beta + 1$. Hence, there is a constant c for which

$$g(x) = c \Delta_V^{\alpha + \beta + 1}(x), \quad x \in V.$$

Proof. Let $y \in V$. By Fubini’s theorem, we have

$$\int_{(0,y)} g(x) \, dx = \int_{(0,y)} \Delta_V^\beta(t) \left(\int_{(t,y)} \Delta_V^\alpha(x-t) \, dx\right) \, dt$$

$$= \int_{(0,y)} \Delta_V^\beta(t) \left(\int_{(0,y-t)} \Delta_V^\alpha(z) \, dz\right) \, dt$$

$$\leq \int_{(0,y)} \Delta_V^\beta(t) \left(\int_{(0,y)} \Delta_V^\alpha(z) \, dz\right) \, dt$$

$$= \left(\int_{(0,y)} \Delta_V^\beta(t) \, dt\right) \cdot \left(\int_{(0,y)} \Delta_V^\alpha(z) \, dz\right).$$
If \(\alpha > \sigma(V) \) and \(\beta > \sigma(V) \), the two integrals above are finite, and so \(g(x) \) is finite for almost every \(x \in V \).

Let \(x_0 \in V \) be such that \(g(x_0) \) is finite. Since \(V \) is homogeneous, for any \(x \in V \) there exists \(A \in G(V) \) so that \(x = Ax_0 \). Then we have

\[
g(x) = g(Ax_0) = \int_{(0, Ax_0)} \Delta^\alpha_V(Ax_0 - t)\Delta^\beta_V(t) \, dt
\]

\[
= \int_{(0, x_0)} \Delta^\alpha_V(A(x_0 - z))\Delta^\beta_V(Az) |A| \, dz
\]

\[
= \int_{(0, x_0)} |A|^\alpha \Delta^\alpha_V(x_0 - z) |A|^\beta \Delta^\beta_V(z) |A| \, dz = |A|^\alpha + \beta + 1 g(x_0).
\]

Hence, \(g(x) \) is finite for each \(x \in V \) and is homogeneous of order \(\alpha + \beta + 1 \). Therefore, there is a constant \(c \) for which \(g(x) = c\Delta^\alpha + \beta + 1_V(x), \ x \in V \).

Lemma 2. Let \(V \) be a domain of positivity and let

\[
h(x) = \int_{(x, \infty)} \Delta^\gamma(t - x)\Delta^\delta_V(t) \, dt, \quad x \in V.
\]

If \(\alpha > \sigma(V) \) and \(\alpha + \beta < -3 - \sigma(V^*) - \sigma(V) \), then \(h(x) \) is finite for each \(x \in V \) and homogeneous of order \(\alpha + \beta + 1 \). Hence, there is a constant \(c \) for which

\[
h(x) = c\Delta^\alpha + \beta + 1_V(x), \quad x \in V.
\]

Proof. The condition on \(\alpha + \beta \) gives \(-\sigma(V) > 3 + \sigma(V^*) + \alpha + \beta \). Let \(y \in R \) so that \(-\sigma(V) > y > 3 + \sigma(V^*) + \alpha + \beta \). We have, for \(y \in V \),

\[
\int_{(y, \infty)} \Delta^\gamma(x) h(x) \, dx
\]

\[
= \int_{(y, \infty)} \Delta^\gamma(x) \int_{(x, \infty)} \Delta^\alpha_V(t - x)\Delta^\delta_V(t) \, dt \, dx
\]

\[
= \int_{(y, \infty)} \left(\int_{(y, t)} \Delta^\alpha_V(t - x)\Delta^\gamma(x) \, dx \right) \Delta^\delta_V(t) \, dt
\]

\[
\leq \int_{(y, \infty)} \left(\int_{(0, t)} \Delta^\alpha_V(t - x)\Delta^\gamma(x) \, dx \right) \Delta^\delta_V(t) \, dt.
\]

Since \(\alpha > \sigma(V) \) and \(-\gamma > \sigma(V) \), by Lemma 1, we have

\[
\int_{(y, \infty)} \left(\int_{(0, t)} \Delta^\alpha_V(t - x)\Delta^\gamma(x) \, dx \right) \Delta^\delta_V(t) \, dt = c \int_{(y, \infty)} \Delta^{\alpha + \beta + 1 - \gamma + 1}_V(t) \, dt.
\]

Since \(V \) is a domain of positivity, a change of variable \(t \to t^* \) gives

\[
\int_{(y, \infty)} \Delta^{\alpha + \beta + 1 - \gamma + 1}_V(t) \, dt = \int_{(0, y^*)} \Delta^{\alpha - \beta + \gamma - 3}_V(t) \, dt.
\]

Since \(-\alpha - \beta + \gamma - 3 > \sigma(V^*) \), the last integral is finite. Hence, \(h(x) \) is finite for almost every \(x \in V \). Clearly, \(h(Ax) = |A|^\alpha + \beta + 1 h(x) \) for \(A \in G(V) \). Hence, \(h(x) \) is finite for each \(x \in V \) and is homogeneous of order \(\alpha + \beta + 1 \). Therefore, there is a constant \(c \) for which \(h(x) = c\Delta^\alpha + \beta + 1_V(x), \ x \in V \).
Proof of Theorem 1. Noting the condition on \(\gamma \) in the hypothesis, we can choose \(b \) so that \(\sigma(V) < b < (-3 - \sigma(V^*) - \sigma(V) - \gamma + q(\frac{1}{p} - r + 1))\frac{p'}{q} \).

Using Hölder’s inequality, we have

\[
\int_V \Delta^{\gamma-q}(x)(R_rf(x))^q \, dx
= \int_V \Delta^{\gamma-q}(x) \left(\int_{(0,x)} \Delta_V^{(r-1)/p}(x-t)f(t) \right. \\
 \left. \cdot \Delta_V^{-b/p'}(t)\Delta_V^{(r-1)/p'}(x-t)\Delta_V^{b/p'}(t) \right) \, dx
\leq \int_V \Delta^{\gamma-q}(x) \left(\int_{(0,x)} \Delta_V^{r-1}(x-t)f^p(t)\Delta_V^{-b(p-1)}(t) \right) \, dx
 \cdot \left(\int_{(0,x)} \Delta_V^{r-1}(x-t)\Delta_V^{b}(t) \right) \, dx.
\]

Noting that \(r - 1 > \sigma(V) \) and \(b > \sigma(V) \), by Lemma 1, we have

\[
\int_V \Delta^{\gamma-q}(x)(R_rf(x))^q \, dx
\leq c \int_V \Delta_V^{r-1}(x-t)f^p(t)\Delta_V^{-b(p-1)}(t) \, dx.
\]

Since \(q/p \geq 1 \), by the Minkowski integral inequality, we have

\[
\int_V \Delta^{\gamma-q}(x)(R_rf(x))^q \, dx
\leq c \left(\int_V f^p(t) \right. \\
 \left. \cdot \Delta_V^{-b(p-1)}(t) \left(\int_{(t,\infty)} \Delta_V^{(r-1)q/p}(x-t)\Delta_V^{\gamma-q + (r+b)q/p'}(x) \, dx \right)^{p/q} \right) \, dt \right)^{q/p}.
\]

Noting that \((r - 1)q/p > \sigma(V) \) and \((r - 1)q/p + \gamma - q + (r + b)q/p' = rq - q/p + \gamma - q + bq/p' < -3 - \sigma(V^*) - \sigma(V) \), by Lemma 2, we have

\[
\int_V \Delta^{\gamma-q}(x)(R_rf(x))^q \, dx
= c \left(\int_V f^p(t)\Delta_V^{(r-1)q/p + \gamma - q + (r+b)q/p'}(t) \, dt \right)^{q/p}
= c \left(\int_V f^p(t)\Delta_V^{(r-1)p + (\gamma + 1)p/q - 1}(t) \, dt \right)^{q/p}.
\]

Using Theorem 1 and the fact that Weyl’s operator is the dual of Riemann-Liouville’s operator, we can prove the following norm inequality for Weyl’s operator on cones.
Theorem 2. Let V be a domain of positivity in \mathbb{R}^n. If $1 \leq p \leq q < \infty$, $r - 1 > \sigma(V)$, and $\gamma > \sigma(V)(1 + q/p') + \sigma(V^*)q/p' + q(1 + 2/p')$, then

$$\left(\int_V \Delta_V^{1-q}(x) (W_t f(x))^q dx \right)^{1/q} \leq c \left(\int_V f^p(x) \Delta_V^{(r-1)p+(\gamma+1)p/q-1}(x) dx \right)^{1/p}. $$

Now we consider the Hardy operator

$$Hf(x) = \int_{(0,x)} f(t) dt$$
on cones in \mathbb{R}^d. As a corollary of the main theorem in [7], we have shown that if $1 < p < q < \infty$ and $\gamma < -\sigma(V)q/p' - \sigma(V^*) + q/p - 2$, then

$$\left(\int_V \Delta_V^{1-q}(x) (Hf(x))^q dx \right)^{1/q} \leq c \left(\int_V f^p(x) \Delta_V^{(\gamma+1)p/q-1}(x) dx \right)^{1/p}. $$

It is natural to inquire whether there exist appropriate numbers α and β so that

$$\left(\int_V \Delta^\alpha(x) (Hf(x))^q dx \right)^{1/q} \leq c \left(\int_V f^p(x) \Delta^\alpha(x) dx \right)^{1/p},$$

holds for all $f \geq 0$ when $1 < q < p < \infty$. In the one dimensional case, the fact that (3) does not hold for any values of α and β when $1 < q < p < \infty$ is simply a consequence of a theorem in [3] concerning the Hardy inequality with general weights. This result can be generalized to cones in \mathbb{R}^d.

Theorem 3. Let V be a domain of positivity in \mathbb{R}^d. If $1 < q < p < \infty$, then for any values α and β, there is no constant $c > 0$ such that (3) holds for all $f \geq 0$.

Using the Hardy operator with weight, we see immediately that Theorem 3 is equivalent to the following theorem.

Theorem 4. Let

$$H_\alpha f(x) = \int_{(0,x)} f(t) \Delta^\alpha_V(t) dt,$$

and let V be a domain of positivity in \mathbb{R}^d. If $1 < q < p < \infty$, then for any values of α and β, there is no constant $c > 0$ such that

$$\left(\int_V \Delta^\beta(x) (H_\alpha f(x))^q dx \right)^{1/q} \leq c \left(\int_V f^p(x) \Delta^\gamma(x) dx \right)^{1/p},$$

holds for all $f \geq 0$.

Proof of Theorem 4. First we show that in order that a $c > 0$ exist for which (4) holds for all $f \geq 0$, α and β must satisfy $(\alpha + 1)/p' + (\beta + 1)/q = 0$ and $\beta < -1$.

Assume that (4) holds for some values of α and β. Then (4) implies that for all $z \in V$,

$$\left(\int_{(z, \infty)} \Delta^\alpha_V(x) \left(\int_{(0,x)} f(t) \Delta^\alpha_V(t) dt \right)^q dx \right)^{1/q} \leq c \left(\int_V f^p(x) \Delta^\alpha_V(x) dx \right)^{1/p}. $$
Further, it implies

$$\left(\int_{(0,z)} f(t)\Delta^\alpha_V(t)dt \right) \cdot \left(\int_{(z,\infty)} \Delta^\beta_V(x)dx \right)^{1/q} \leq c \left(\int_V f^p(x)\Delta^\alpha_V(x)dx \right)^{1/p}. $$

Choose a sequence \(\{ V_n \} \) of nested cone intervals so that \(V_n \subset (0,z) \) and \(V_n \nsubseteq (0,z) \). Note that \(\int_{V_n} \Delta^\alpha_V(t)dt < \infty \). Let \(f_n(x) = \chi_{V_n}(x) \). Substituting \(f_n(x) \) in (5) we have

$$\left(\int_{V_n} \Delta^\alpha_V(t)dt \right)^{1/p'} \cdot \left(\int_{(z,\infty)} \Delta^\beta_V(x)dx \right)^{1/q} \leq c. $$

It follows that \(\int_{V_n} \Delta^\alpha_V(t)dt \) is bounded and so \(\int_{(0,z)} \Delta^\alpha_V(x)dx \) is finite. It also follows from (6) that \(\int_{(z,\infty)} \Delta^\beta_V(x)dx \) is finite for each \(z \). It is known [6] that

$$\Delta^\beta_V(x) \leq \rho|x|^d \quad \text{for some } \rho > 0. $$

Therefore, in order that \(\int_{(z,\infty)} \Delta^\beta_V(x)dx \) be finite for each \(z \) it is necessary that \(\beta < -1 \).

Let \(f(x) = \chi_{(0,z)}(x) \). Substituting \(f(x) \) in (5) we have

$$\int_{(0,z)} \Delta^\alpha_V(t)dt \cdot \left(\int_{(z,\infty)} \Delta^\beta_V(x)dx \right)^{1/q} \leq c, \quad z \in V. $$

Integrating these integrals in (8) and taking the supremum over \(z \in V \), we have

$$\sup_{z \in V} \Delta^{(\alpha+1)/p'}(z)\Delta^{(\beta+1)/q}(z) \leq c. $$

Therefore, it is necessary that \((\alpha + 1)/p' + (\beta + 1)/q = 0 \).

Next, we show that (4) cannot hold even if \(\alpha \) and \(\beta \) satisfy the aforementioned conditions. First assume that \(1 < q \). Let \(a = (q - 1)/(p - q) \) and \(b = q/(p - q) \). Note that \(a > 0, b > 0, \) and \((\alpha + 1)(a + 1/p) + (\beta + 1)b = 0 \). Take \(z_0 \in V \) with \(\Delta_V(z_0) = 1 \). Define

$$f_n(x) = \Delta^{a(\alpha+1)}(x) \min(n, \Delta^{b(\beta+1)}(x))\chi_{(0,nz_0)}(x), \quad x \in V, n = 1, 2, \ldots. $$

Clearly, for each \(n \), \(f^n(x) \) is integrable on \(V \). We show that \(\int_V f^n(x)dx \to \infty \) as \(n \to \infty \).

Choose \(\alpha_n \) so that

$$\Delta^{b(\beta+1)}(\alpha_n z_0) = \alpha_n^{b(\beta+1)} = n. $$

Then we have

$$\int_V f^n(x)\Delta^\alpha_V(x)dx \geq \int_{\{\alpha_n z_0, n z_0\}} \Delta^{a(\alpha+1)p}(x) \cdot \Delta^{b(\beta+1)p}(x)\Delta^\alpha_V(x)dx$$

$$= \int_{\{\alpha_n z_0, n z_0\}} \Delta^{-1}(x)dx. $$
Since $\beta + 1 < 0$, it follows that $\alpha_n \to 0$ and $\langle \alpha_n z_0, nz_0 \rangle \not\to V$ as $n \to \infty$. Noting that $\Delta^{-1}_V(x)$ is not integrable on V, we have that

$$\int_V f_n^p(x) \Delta^q_V(x) \, dx \to \infty \quad \text{as} \quad n \to \infty.$$

Using Fubini's theorem and noting that $\int_{(x, \infty)} \Delta^\beta_V(y) \, dy$ is finite for every $x \in V$, we have

$$\int_V \left(\int_{(0,y)} f_n(z) \Delta^q_V(z) \, dz \right)^q \Delta^\beta_V(y) \, dy \geq \int_V \left(\int_{(0,y)} f_n(x) \Delta^q_V(x) \left(\int_{(0,x)} f_n(z) \Delta^q_V(z) \, dz \right)^{q-1} \Delta^\beta_V(y) \, dy \right) \, dx$$

$$= \int_V f_n(x) \Delta^q_V(x) \left(\int_{(0,x)} f_n(z) \Delta^q_V(z) \, dz \right)^{q-1} \Delta^\beta_V(y) \, dy \geq c \int_V f_n(x) \Delta^q_V(x) \left(\int_{(0,x)} f_n(z) \Delta^q_V(z) \, dz \right)^{q-1} \Delta^{\beta+1}_V(x) \, dx,$$

where c is a constant independent of f_n.

Since $\beta + 1 < 0$, $f_n(x) \Delta^\alpha V_a(a+1) V(x)$ is a decreasing function of $x \in V$ in the partial ordering defined by V. Further, we have that

$$\int_{(0,x)} f_n(z) \Delta^q_V(z) \, dz \geq f_n(x) \Delta^\alpha V_a(a+1) V(z) \int_{(0,x)} \Delta^\alpha V_a(a+1) V(z) \, dz.$$

By (7), in order that $\int_{(0,x)} \Delta^q_V(z) \, dz$ be finite, it is necessary that $\alpha > -1$. Thus, $a(\alpha + 1) > 0$ and $\int_{(0,x)} \Delta^\alpha V_a(a+1) V(z) \, dz$ is finite. So the last integral in (10) equals $c \Delta^\alpha V_a(a+1) V(x)$ and

$$\int_{(0,x)} f_n(z) \Delta^q_V(z) \, dz \geq c f_n(x) \Delta^{\beta+1}_V(x),$$

where c does not depend on f_n.

Therefore, (9) becomes

\[
\int_V \left(\int_{(0,y)} f_n(z) \Delta^\alpha_V(z) dz \right) \Delta^\beta_V(y) dy
\geq c \int_V f_n(x) \Delta^\alpha_V(x) \left(\int_{(0,x)} f_n(z) \Delta^\alpha_V(z) dz \right)^{q-1} \Delta^\beta_V(x) dx
\geq c \int_V f_n(x) \Delta^\alpha_V(x) f_n^{-1}(x) \Delta^{(\alpha+1)(q-1)}_V(x) \Delta^\beta_V(x) dx.
\]

Noting that
\[
\Delta^{(\alpha+1)(q-1)+(\beta+1)}_V(x) \geq f_n^{p-q}(x),
\]
we finally have

\[
\int_V \left(\int_{(0,y)} f_n(z) \Delta^\alpha_V(z) dz \right)^q \Delta^\beta_V(y) dy \geq c \int_V f_n^p(x) \Delta^\beta_V(x) dx.
\]

Therefore,

\[
\left(\int_V \left(\int_{(0,y)} f_n(z) \Delta^\alpha_V(z) dz \right)^q \Delta^\beta_V(y) dy \right)^{1/q} \geq c \left(\int_V f_n^p(x) \Delta^\beta_V(x) dx \right)^{1/p},
\]

where \(c \) is independent of \(f_n(x). \) Since \(\int_V f_n^p(x) \Delta^\beta_V(x) dx \to \infty \) as \(n \to \infty \) and \(q < p, \) there is no constant \(c \) such that for all \(f_n, \)

\[
\left(\int_V \left(\int_{(0,y)} f_n(z) \Delta^\alpha_V(z) dz \right)^q \Delta^\beta_V(y) dy \right)^{1/q} \leq c \left(\int_V f_n^p(x) \Delta^\beta_V(x) dx \right)^{1/p}.
\]

So we proved Theorem 4 in the case \(1 < q. \) If \(q = 1, \) we define

\[
f_n(x) = \min(n, \Delta^{b+1}_V(x)) \chi_{(0,nz_0)}(x), \quad x \in V, \ n = 1, 2, \ldots,
\]

and (9) becomes the following simple inequality:

\[
\int_V \left(\int_{(0,y)} f_n(z) \Delta^\alpha_V(z) dz \right) \Delta^\beta_V(y) dy
= \int_V f_n(x) \Delta^\alpha_V(x) \left(\int_{(x, \infty)} \Delta^\beta_V(y) dy \right) dx
= c \int_V f_n(x) \Delta^{\alpha+\beta+1}_V(x) dx \geq c \int_V f_n^p(x) \Delta^\beta_V(x) dx.
\]

The theorem is proved.

Now we consider the Hardy operator of the form

\[
\tilde{H}_\alpha f(x) = \int_{(x, \infty)} f(t) \Delta^\beta_V(t) dt.
\]

For \(\tilde{H}_\alpha, \) we expect the following similar result:
Theorem 5. Let V be a domain of positivity in \mathbb{R}^d. If $1 < q < p < \infty$, then for any values of α and β, there is no constant $c > 0$ such that

$$\left(\int_V \Delta^\beta_P(x)(\vec{H}_\alpha f(x))^q dx \right)^{1/q} \leq c \left(\int_V f^p(x)\Delta^\alpha_P(x)dx \right)^{1/p}$$

holds for all $f \geq 0$.

Proof. Assume that for some α and β there is a constant $c > 0$ such that (11) holds for all $f \geq 0$. Let $g \geq 0$ be a function defined on V with $\int_V g^p(y)\Delta^\alpha_P(y)dy = 1$. Then, for $f \geq 0$,

$$\int_V \left(\int_{(0,y)} f(x)\Delta^\beta_P(x)dx \right) g(y)\Delta^\alpha_P(y)dy$$

$$= \int_V \left(\int_{(x,\infty)} g(y)\Delta^\alpha_P(y)dy \right) f(x)\Delta^\beta_P(x)dx$$

$$\leq \left(\int_V \left(\int_{(x,\infty)} g(y)\Delta^\alpha_P(y)dy \right)^q \Delta^\beta_P(x)dx \right)^{1/q} \left(\int_V f^q(y)\Delta^\alpha_P(y)dy \right)^{1/q'}$$

$$\leq c \left(\int_V g^p(y)\Delta^\alpha_P(y)dy \right)^{1/p} \left(\int_V f^q(y)\Delta^\alpha_P(y)dy \right)^{1/q'}$$

$$= c \left(\int_V f^q(y)\Delta^\alpha_P(y)dy \right)^{1/q'} .$$

Thus, for $f \geq 0$,

$$\left(\int_V \Delta^\alpha_P(y) \left(\int_{(0,y)} f(x)\Delta^\beta_P(x)dx \right)^p dy \right)^{1/p'} \leq c \left(\int_V f^q(y)\Delta^\alpha_P(y)dy \right)^{1/q'} .$$

But this is impossible by Theorem 4. So there are no α and β so that (11) holds for all $f \geq 0$.

References

2. M. Koecher, *Positivitatsbereiche im \mathbb{R}^n*, Amer. J. Math. 79 (1957), 575–596. (German)