A note on the problem of prescribing Gaussian curvature on surfaces
HTML articles powered by AMS MathViewer
- by Wei Yue Ding and Jia Quan Liu
- Trans. Amer. Math. Soc. 347 (1995), 1059-1066
- DOI: https://doi.org/10.1090/S0002-9947-1995-1257102-2
- PDF | Request permission
Abstract:
The problem of existence of conformal metrics with Gaussian curvature equal to a given function $K$ on a compact Riemannian $2$-manifold $M$ of negative Euler characteristic is studied. Let ${K_0}$ be any nonconstant function on $M$ with $\max {K_0} = 0$, and let ${K_\lambda } = {K_0} + \lambda$. It is proved that there exists a ${\lambda ^{\ast }} > 0$ such that the problem has a solution for $K = {K_\lambda }$ iff $\lambda \in ( - \infty ,{\lambda ^{\ast }}]$. Moreover, if $\lambda \in (0,{\lambda ^{\ast }})$, then the problem has at least $2$ solutions.References
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Sun-Yung Alice Chang and Paul C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math. 159 (1987), no. 3-4, 215–259. MR 908146, DOI 10.1007/BF02392560
- Sun-Yung A. Chang and Paul C. Yang, Conformal deformation of metrics on $S^2$, J. Differential Geom. 27 (1988), no. 2, 259–296. MR 925123
- Kung-ching Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1196690, DOI 10.1007/978-1-4612-0385-8
- Kung Ching Chang and Jia Quan Liu, On Nirenberg’s problem, Internat. J. Math. 4 (1993), no. 1, 35–58. MR 1209959, DOI 10.1142/S0129167X93000042
- Wen Xiong Chen and Wei Yue Ding, Scalar curvatures on $S^2$, Trans. Amer. Math. Soc. 303 (1987), no. 1, 365–382. MR 896027, DOI 10.1090/S0002-9947-1987-0896027-4
- Jerry L. Kazdan and F. W. Warner, Curvature functions for compact $2$-manifolds, Ann. of Math. (2) 99 (1974), 14–47. MR 343205, DOI 10.2307/1971012
- J. Moser, On a nonlinear problem in differential geometry, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 273–280. MR 0339258
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1059-1066
- MSC: Primary 53C21; Secondary 35J60, 53A30, 58G30
- DOI: https://doi.org/10.1090/S0002-9947-1995-1257102-2
- MathSciNet review: 1257102