Geometry of dots and ropes
HTML articles powered by AMS MathViewer
- by Karen A. Chandler
- Trans. Amer. Math. Soc. 347 (1995), 767-784
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273473-5
- PDF | Request permission
Abstract:
An $\alpha$-dot is the first infinitesimal neighbourhood of a point with respect to an $(\alpha - 1)$-dimensional affine space. We define a notion of uniform position for a collection of dots in projective space, which in particular holds for a collection of dots arising as a general plane section of a higher-dimensional scheme. We estimate the Hilbert function of such a collection of dots, with the result that Theorem 1. Let $\Gamma$ be a collection of $d$ $\alpha$-dots in uniform position in ${\mathbb {P}^n},\alpha \geqslant 2$. Then the Hilbert function ${h_\Gamma }$ of $\Gamma$ satisfies \[ {h_\Gamma }(r) \geqslant \min (rn + 1,2d) + (\alpha - 2)\min ((r - 1)n - 1, d)\] for $r \geqslant 3$. Equality occurs for some $r$ with $rn + 2 \leqslant 2d$ if and only if ${\Gamma _{{\text {red}}}}$ is contained in a rational normal curve $C$, and the tangent directions to this curve at these points are all contained in $\Gamma$. Equality occurs for some $r$ with $(r - 1)n \leqslant d$ if and only if $\Gamma$ is contained in the first infinitesimal neighbourhood of $C$ with respect to a subbundle, of rank $\alpha - 1$ and of maximal degree, of the normal bundle of $C$ in ${\mathbb {P}^n}$. This implies an upper bound on the degree of a subbundle of rank $\alpha - 1$ of the normal bundle of an irreducible nondegenerate smooth curve of degree $d$ in ${\mathbb {P}^n}$, by a Castelnuovo argument.References
- J. Alexander and A. Hirschowitz, La méthode d’Horace éclatée: application à l’interpolation en degré quatre, Invent. Math. 107 (1992), no. 3, 585–602 (French). MR 1150603, DOI 10.1007/BF01231903
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- David Eisenbud and Mark Green, Clifford indices of ribbons, Trans. Amer. Math. Soc. 347 (1995), no. 3, 757–765. MR 1273474, DOI 10.1090/S0002-9947-1995-1273474-7 K. Chandler, Hilbert functions of dots in uniform position, Ph.D. Thesis, Harvard Univ., 1992. —, Hilbert functions of dots in linear general position, Proc. Conference on Zero-Dimensional Schemes, Ravello, Italy, June, 1992.
- David Eisenbud and Joe Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), no. 1, 15–30. MR 1129837
- David Eisenbud and Joe Harris, Schemes, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. The language of modern algebraic geometry. MR 1166800
- Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558, DOI 10.1007/978-1-4757-2189-8
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 767-784
- MSC: Primary 14H45; Secondary 14N05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273473-5
- MathSciNet review: 1273473