Invariants of locally conformally flat manifolds
HTML articles powered by AMS MathViewer
- by Thomas Branson, Peter Gilkey and Juha Pohjanpelto
- Trans. Amer. Math. Soc. 347 (1995), 939-953
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282884-3
- PDF | Request permission
Abstract:
Let $M$ be a locally conformally flat manifold with metric $g$. Choose a local coordinate system on $M$ so $g = {e^{2h}}x dx \circ dx$ where $dx \circ dx$ is the Euclidean standard metric. A polynomial $P$ in the derivatives of $h$ with coefficients depending smoothly on $h$ is a local invariant for locally conformally flat structures if the expression $P({h_X})$ is independent of the choice of $X$. Form valued local invariants are defined similarly. In this paper, we study the properties of the associated de Rham complex. We show that any invariant form can be obtained from the previously studied local invariants of Riemannian structures by restriction. We show the cohomology of the de Rham complex of local invariants is trivial. We also obtain the following characterization of the Euler class. Suppose that for an invariant polynomial $P$, the integral $\int _{{T^m}} {P|d{v_g}|}$ vanishes for any locally conformally flat metric $g$ on the torus ${T^m}$. Then up to the divergence of an invariantly defined one form, the polynomial $P$ is a constant multiple of the Euler integrand.References
- Ian M. Anderson, Introduction to the variational bicomplex, Mathematical aspects of classical field theory (Seattle, WA, 1991) Contemp. Math., vol. 132, Amer. Math. Soc., Providence, RI, 1992, pp. 51–73. MR 1188434, DOI 10.1090/conm/132/1188434
- André Avez, Characteristic classes and Weyl tensor: Applications to general relativity, Proc. Nat. Acad. Sci. U.S.A. 66 (1970), 265–268. MR 263098, DOI 10.1073/pnas.66.2.265
- Thomas P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995), no. 10, 3671–3742. MR 1316845, DOI 10.1090/S0002-9947-1995-1316845-2
- Thomas P. Branson, Sun-Yung A. Chang, and Paul C. Yang, Estimates and extremals for zeta function determinants on four-manifolds, Comm. Math. Phys. 149 (1992), no. 2, 241–262. MR 1186028
- Thomas P. Branson and Bent Ørsted, Conformal indices of Riemannian manifolds, Compositio Math. 60 (1986), no. 3, 261–293. MR 869104
- Thomas P. Branson and Bent Ørsted, Conformal geometry and global invariants, Differential Geom. Appl. 1 (1991), no. 3, 279–308. MR 1244447, DOI 10.1016/0926-2245(91)90004-S
- Peter B. Gilkey, Local invariants of an embedded Riemannian manifold, Ann. of Math. (2) 102 (1975), no. 2, 187–203. MR 394693, DOI 10.2307/1971030
- Peter B. Gilkey, Leading terms in the asymptotics of the heat equation, Geometry of random motion (Ithaca, N.Y., 1987) Contemp. Math., vol. 73, Amer. Math. Soc., Providence, RI, 1988, pp. 79–85. MR 954631, DOI 10.1090/conm/073/954631
- Peter B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, 2nd ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1396308
- Samuel I. Goldberg, Curvature and homology, Pure and Applied Mathematics, Vol. XI, Academic Press, New York-London, 1962. MR 0139098
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, DOI 10.1090/S0273-0979-1987-15514-5 E. Miller, Ph.D. thesis, M.I.T.
- Peter J. Olver, Conservation laws and null divergences, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 3, 529–540. MR 720804, DOI 10.1017/S030500410000092X
- E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys. 86 (1982), no. 3, 321–326. MR 677001 H. Weyl, The classical groups, Princeton Univ. Press, Princeton, NJ, 1946.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 939-953
- MSC: Primary 53C25; Secondary 53A30, 57R15, 58G26
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282884-3
- MathSciNet review: 1282884