On the general notion of fully nonlinear second-order elliptic equations
HTML articles powered by AMS MathViewer
- by N. V. Krylov
- Trans. Amer. Math. Soc. 347 (1995), 857-895
- DOI: https://doi.org/10.1090/S0002-9947-1995-1284912-8
- PDF | Request permission
Abstract:
The general notion of fully nonlinear second-order elliptic equation is given. Its relation to so-called Bellman equations is investigated. A general existence theorem for the equations like ${P_m}({u_{{x^i}{x^j}}}) = \sum \nolimits _{k = 0}^{m - 1} {{c_k}(x){P_k}({u_{{x^i}{x^j}}})}$ is obtained as an example of an application of the general notion of fully nonlinear elliptic equations.References
- M. F. Atiyah, R. Bott, and L. Gȧrding, Lacunas for hyperbolic differential operators with constant coefficients. I, Acta Math. 124 (1970), 109–189. MR 470499, DOI 10.1007/BF02394570
- I. Ja. Bakel′man, Geometricheskie metody resheniya èllipticheskikh uravneniĭ, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0194727
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. MR 739925, DOI 10.1002/cpa.3160370306
- L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), no. 2, 209–252. MR 780073, DOI 10.1002/cpa.3160380206
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), no. 3-4, 261–301. MR 806416, DOI 10.1007/BF02392544 R. Courant, Methods of mathematical physics, Vol. 2, Interscience, New York, 1966.
- Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67. MR 1118699, DOI 10.1090/S0273-0979-1992-00266-5
- Lars Gȧrding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957–965. MR 0113978, DOI 10.1512/iumj.1959.8.58061
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395 L. Hörmander, The analysis of linear partial differential operators, Vols. 1, 2, Springer, New York, 1990.
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- N. M. Ivochkina, Description of cones of stability generated by differential operators of Monge-Ampère type, Mat. Sb. (N.S.) 122(164) (1983), no. 2, 265–275 (Russian). MR 717679
- N. M. Ivochkina, Solution of the Dirichlet problem for equations of $m$th order curvature, Mat. Sb. 180 (1989), no. 7, 867–887, 991 (Russian); English transl., Math. USSR-Sb. 67 (1990), no. 2, 317–339. MR 1014618, DOI 10.1070/SM1990v067n02ABEH002089
- N. V. Krylov, Controlled diffusion processes, Applications of Mathematics, vol. 14, Springer-Verlag, New York-Berlin, 1980. Translated from the Russian by A. B. Aries. MR 601776 —, On control of a diffusion process up to the time of first exit from a region, Izv. Akad. Nauk Armyan. SSR, Ser. Math. (1981), 1029-1048; English transl. Math. USSR-Izv. 19 (1982), 297-313. —, Nonlinear elliptic and parabolic equations of second order, "Nauka", Moscow, 1985; English transl. by Reidel, Dordrecht, 1987.
- N. V. Krylov, On the first boundary value problem for nonlinear degenerate elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 2, 242–269, 446 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 2, 217–244. MR 896996, DOI 10.1070/IM1988v030n02ABEH001002
- N. V. Krylov, Unconditional solvability of the Bellman equation with constant coefficients in convex domains, Mat. Sb. (N.S.) 135(177) (1988), no. 3, 297–311, 414 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 2, 289–303. MR 937642, DOI 10.1070/SM1989v063n02ABEH003274
- N. V. Krylov, Smoothness of the payoff function for a controllable diffusion process in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 66–96 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 65–95. MR 992979, DOI 10.1070/IM1990v034n01ABEH000603
- Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Inc., Boston, Mass., 1964. MR 0162808
- Wim Nuij, A note on hyperbolic polynomials, Math. Scand. 23 (1968), 69–72 (1969). MR 250128, DOI 10.7146/math.scand.a-10898
- M. V. Safonov, Classical solution of second-order nonlinear elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1272–1287, 1328 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 3, 597–612. MR 984219, DOI 10.1070/IM1989v033n03ABEH000858
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 857-895
- MSC: Primary 35J60; Secondary 35J65
- DOI: https://doi.org/10.1090/S0002-9947-1995-1284912-8
- MathSciNet review: 1284912