The Hausdorff dimension of $\lambda$-expansions with deleted digits
HTML articles powered by AMS MathViewer
- by Mark Pollicott and Károly Simon
- Trans. Amer. Math. Soc. 347 (1995), 967-983
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290729-0
- PDF | Request permission
Abstract:
In this article we examine the continuity of the Hausdorff dimension of the one parameter family of Cantor sets $\Lambda (\lambda ) = \{ \sum \nolimits _{k = 1}^\infty {{i_k}{\lambda ^k}:{i_k} \in S\} }$, where $S \subset \{ 0,1, \ldots ,(n - 1)\}$. In particular, we show that for almost all (Lebesgue) $\lambda \in [\tfrac {1} {n},\tfrac {1} {l}]$ we have that ${\dim _H}(\Lambda (\lambda )) = \frac {{\log l}} {{ - \log \lambda }}$ where $l = \operatorname {Card} (S)$. In contrast, we show that under appropriate conditions on $S$ we have that for a dense set of $\lambda \in [\tfrac {1} {n},\tfrac {1} {l}]$ we have ${\dim _H}(\Lambda (\lambda )) < \frac {{\log l}} {{ - \log \lambda }}$.References
- K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 2, 339–350. MR 923687, DOI 10.1017/S0305004100064926 —, Fractal geometry, Cambridge Univ. Press, Cambridge, 1990. M. Keane, M. Smorodinsky and B. Solomyak, Cantor criticality, Talk delivered by M. Keane (Warwick conference on ${\mathbb {Z}^n}$-actions), September 1993.
- Jacob Palis and Floris Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, vol. 35, Cambridge University Press, Cambridge, 1993. Fractal dimensions and infinitely many attractors. MR 1237641
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 967-983
- MSC: Primary 11K55; Secondary 28A78
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290729-0
- MathSciNet review: 1290729