Cauchy-Green type formulae in Clifford analysis
HTML articles powered by AMS MathViewer
- by John Ryan
- Trans. Amer. Math. Soc. 347 (1995), 1331-1341
- DOI: https://doi.org/10.1090/S0002-9947-1995-1249888-8
- PDF | Request permission
Abstract:
A Cauchy integral formula is constructed for solutions to the polynomial Dirac equation $({D^k} + \sum \nolimits _{m = 0}^{k - 1} {{b_m}{D^m})f = 0}$, where each ${b_m}$ is a complex number, $D$ is the Dirac operator in ${R^n}$, and $f$ is defined on a domain in $^{{R^n}}$ and takes values in a complex Clifford algebra. Some basic properties for the solutions to this equation, arising from the integral formula, are described, including an approximation theorem. We also introduce a Bergman kernel for square integrable solutions to $(D + \lambda )f = 0$ over bounded domains with piecewise ${C^1}$, or Lipschitz, boundary.References
- F. Brackx, Richard Delanghe, and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 697564
- F. Brackx, F. Sommen, and N. Van Acker, Reproducing Bergman kernels in Clifford analysis, Complex Variables Theory Appl. 24 (1994), no. 3-4, 191–204. MR 1270309, DOI 10.1080/17476939408814711 A. C. Dixon, On the Newtonian potential, Quart. J. Math. 35 (1904), 283-296.
- Klaus Gürlebeck and Wolfgang Sprössig, Quaternionic analysis and elliptic boundary value problems, Mathematical Research, vol. 56, Akademie-Verlag, Berlin, 1989. MR 1056478
- Chun Li, Alan McIntosh, and Stephen Semmes, Convolution singular integrals on Lipschitz surfaces, J. Amer. Math. Soc. 5 (1992), no. 3, 455–481. MR 1157291, DOI 10.1090/S0894-0347-1992-1157291-5 M. Mitrea, Boundary value problems and Hardy spaces associated to the Helmholtz equation (to appear).
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- John Ryan, Iterated Dirac operators and conformal transformations in $\textbf {R}^n$, Proceedings of the XV International Conference on Differential Geometric Methods in Theoretical Physics (Clausthal, 1986) World Sci. Publ., Teaneck, NJ, 1987, pp. 390–399. MR 1023211
- John Ryan, Dirac operators, Schrödinger type operators in $\textbf {C}^n$, and Huygens principle, J. Funct. Anal. 87 (1989), no. 2, 321–347. MR 1026856, DOI 10.1016/0022-1236(89)90013-X
- Michael V. Shapiro and Nikolai L. Vasilevski, On the Bergman kernel function in hyperholomorphic analysis, Acta Appl. Math. 46 (1997), no. 1, 1–27. MR 1432469, DOI 10.1023/A:1017916828448
- F. Sommen and Zhenyuan Xu, Fundamental solutions for operators which are polynomials in the Dirac operator, Clifford algebras and their applications in mathematical physics (Montpellier, 1989) Fund. Theories Phys., vol. 47, Kluwer Acad. Publ., Dordrecht, 1992, pp. 313–326. MR 1199607
- Xu Zhenyuan, A function theory for the operator $D-\lambda$, Complex Variables Theory Appl. 16 (1991), no. 1, 27–42. MR 1092277, DOI 10.1080/17476938208814464
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1331-1341
- MSC: Primary 30G35; Secondary 58G99
- DOI: https://doi.org/10.1090/S0002-9947-1995-1249888-8
- MathSciNet review: 1249888