## Cauchy-Green type formulae in Clifford analysis

HTML articles powered by AMS MathViewer

- by John Ryan PDF
- Trans. Amer. Math. Soc.
**347**(1995), 1331-1341 Request permission

## Abstract:

A Cauchy integral formula is constructed for solutions to the polynomial Dirac equation $({D^k} + \sum \nolimits _{m = 0}^{k - 1} {{b_m}{D^m})f = 0}$, where each ${b_m}$ is a complex number, $D$ is the Dirac operator in ${R^n}$, and $f$ is defined on a domain in $^{{R^n}}$ and takes values in a complex Clifford algebra. Some basic properties for the solutions to this equation, arising from the integral formula, are described, including an approximation theorem. We also introduce a Bergman kernel for square integrable solutions to $(D + \lambda )f = 0$ over bounded domains with piecewise ${C^1}$, or Lipschitz, boundary.## References

- F. Brackx, Richard Delanghe, and F. Sommen,
*Clifford analysis*, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR**697564** - F. Brackx, F. Sommen, and N. Van Acker,
*Reproducing Bergman kernels in Clifford analysis*, Complex Variables Theory Appl.**24**(1994), no. 3-4, 191–204. MR**1270309**, DOI 10.1080/17476939408814711
A. C. Dixon, - Klaus Gürlebeck and Wolfgang Sprössig,
*Quaternionic analysis and elliptic boundary value problems*, Mathematical Research, vol. 56, Akademie-Verlag, Berlin, 1989. MR**1056478** - Chun Li, Alan McIntosh, and Stephen Semmes,
*Convolution singular integrals on Lipschitz surfaces*, J. Amer. Math. Soc.**5**(1992), no. 3, 455–481. MR**1157291**, DOI 10.1090/S0894-0347-1992-1157291-5
M. Mitrea, - Walter Rudin,
*Real and complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR**924157** - John Ryan,
*Iterated Dirac operators and conformal transformations in $\textbf {R}^n$*, Proceedings of the XV International Conference on Differential Geometric Methods in Theoretical Physics (Clausthal, 1986) World Sci. Publ., Teaneck, NJ, 1987, pp. 390–399. MR**1023211** - John Ryan,
*Dirac operators, Schrödinger type operators in $\textbf {C}^n$, and Huygens principle*, J. Funct. Anal.**87**(1989), no. 2, 321–347. MR**1026856**, DOI 10.1016/0022-1236(89)90013-X - Michael V. Shapiro and Nikolai L. Vasilevski,
*On the Bergman kernel function in hyperholomorphic analysis*, Acta Appl. Math.**46**(1997), no. 1, 1–27. MR**1432469**, DOI 10.1023/A:1017916828448 - F. Sommen and Zhenyuan Xu,
*Fundamental solutions for operators which are polynomials in the Dirac operator*, Clifford algebras and their applications in mathematical physics (Montpellier, 1989) Fund. Theories Phys., vol. 47, Kluwer Acad. Publ., Dordrecht, 1992, pp. 313–326. MR**1199607** - Xu Zhenyuan,
*A function theory for the operator $D-\lambda$*, Complex Variables Theory Appl.**16**(1991), no. 1, 27–42. MR**1092277**, DOI 10.1080/17476938208814464

*On the Newtonian potential*, Quart. J. Math.

**35**(1904), 283-296.

*Boundary value problems and Hardy spaces associated to the Helmholtz equation*(to appear).

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 1331-1341 - MSC: Primary 30G35; Secondary 58G99
- DOI: https://doi.org/10.1090/S0002-9947-1995-1249888-8
- MathSciNet review: 1249888