A discrete transform and Triebel-Lizorkin spaces on the bidisc
HTML articles powered by AMS MathViewer
- by Wei Wang PDF
- Trans. Amer. Math. Soc. 347 (1995), 1351-1364 Request permission
Abstract:
We use a discrete transform to study the Triebel-Lizorkin spaces on bidisc $\dot F_p^{\alpha q}, \dot f_p^{\alpha q}$ and establishes the boundedness of transform ${S_\phi }:\dot F_p^{\alpha q} \to \dot f_p^{\alpha q}$ and ${T_\psi }:\dot f_p^{\alpha q} \to \dot F_p^{\alpha q}$. We also define the almost diagonal operator and prove its boundedness. With the use of discrete transform and Journé lemma, we get the atomic decomposition of $\dot f_p^{\alpha q}$ for $0 < p \leqslant 1, p \leqslant q < \infty$. The atom supports on an open set, not a rectangle. Duality ${(\dot f_1^{\alpha q})^{\ast }} = \dot f_\infty ^{ - \alpha q’}, \tfrac {1} {q} + \tfrac {1} {{q’}} = 1, q > 1, \alpha \in R$, is established, too. The case for $\dot F_p^{\alpha q}$ is similar.References
-
L. Carleson, A counterexample for measure bounded on ${H^p}$ for the bidisc, Mittag-Leffler Reports No. 7, 1974.
- Sun-Yung A. Chang and Robert Fefferman, A continuous version of duality of $H^{1}$ with BMO on the bidisc, Ann. of Math. (2) 112 (1980), no. 1, 179–201. MR 584078, DOI 10.2307/1971324
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- Sun-Yung A. Chang and Robert Fefferman, Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43. MR 766959, DOI 10.1090/S0273-0979-1985-15291-7
- Robert Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. MR 898053, DOI 10.2307/1971346
- Michael Frazier and Björn Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), no. 4, 777–799. MR 808825, DOI 10.1512/iumj.1985.34.34041
- Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, DOI 10.1016/0022-1236(90)90137-A
- Jean-Lin Journé, A covering lemma for product spaces, Proc. Amer. Math. Soc. 96 (1986), no. 4, 593–598. MR 826486, DOI 10.1090/S0002-9939-1986-0826486-9
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1351-1364
- MSC: Primary 46E35; Secondary 42B20, 46F05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1254857-8
- MathSciNet review: 1254857