The de Branges-Rovnyak model with finite-dimensional coefficients

Author:
James Guyker

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1383-1389

MSC:
Primary 46E22; Secondary 47A45

DOI:
https://doi.org/10.1090/S0002-9947-1995-1257108-3

MathSciNet review:
1257108

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A characterization in terms of the canonical model spaces of L. de Branges and J. Rovnyak is obtained for Hilbert spaces of formal power series with vector coefficients which satisfy a difference-quotient inequality, thereby extending the closed ideal theorems of A. Beurling and P. D. Lax.

**[1]**J. A. Ball and N. Cohen,*De Branges-Rovnyak operator models and systems theory*:*A survey*, Operator Theory: Advances and Applications, Vol. 50, Birkhäuser, Basel-Boston, 1991, pp. 93-136.**[2]**J. A. Ball and T. L. Kriete III,*Operator-valued Nevanlinna-Pick kernels and the functional models for contraction operators*, Integral Equations Operator Theory**10**(1987), 17-61.**[3]**A. Beurling,*On two problems concerning linear transformations in Hilbert space*, Acta Math.**81**(1949), 239-255.**[4]**L. de Branges,*Factorization and invariant subspaces*, J. Math. Anal. Appl.**29**(1970), 163-200.**[5]**-,*Kreĭn spaces of analytic functions*, J. Funct. Anal.**81**(1988), 219-259.**[6]**-,*Square summable power series*, Springer-Verlag (in preparation).**[7]**L. de Branges and J. Rovnyak,*Appendix on square summable power series, canonical models in quantum scattering theory*, Perturbation Theory and its Applications in Quantum Mechanics, Wiley, New York, 1966, pp. 347-392.**[8]**-,*Square summable power series*, Holt, Rinehart and Winston, New York, 1966.**[9]**J. Guyker,*The de Branges-Rovnyak model*, Proc. Amer. Math. Soc.**111**(1991), 95-99.**[10]**P. R. Halmos,*Shifts on Hilbert spaces*, J. Reine Angew. Math.**208**(1961), 102-112.**[11]**P. D. Lax,*Translation invariant spaces*, Acta Math.**101**(1959), 163-178.**[12]**N. K. Nikol'skiĭ and V. I. Vasyunin,*Notes on two function models*, The Bieberbach Conjecture: Proc. Sympos. on the Occasion of the Proof, Math. Surveys Monographs, vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 113-141.**[13]**J. Rovnyak,*Ideals of square summable power series*, Math. Mag.**33**(1960), 265-270; ibid.**34**(1961), 41-42.**[14]**-,*Ideals of square summable power series*, Proc Amer. Math. Soc.**13**(1962), 360-365.**[15]**-,*Ideals of square summable power series*. II, Proc. Amer. Math. Soc.**16**(1965), 209-212.**[16]**D. Sarason,*Doubly shift-invariant spaces in*, J. Operator Theory**16**(1986), 75-97.**[17]**-,*Shift-invariant spaces from the Brangesian point of view*, The Bieberbach Conjecture: Proc. Sympos. on the Occasion of the Proof, Math. Surveys Monographs, vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 153-166.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46E22,
47A45

Retrieve articles in all journals with MSC: 46E22, 47A45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1257108-3

Article copyright:
© Copyright 1995
American Mathematical Society