Remarks on some integrals and series involving the Stirling numbers and $\zeta (n)$
HTML articles powered by AMS MathViewer
- by Li-Chien Shen
- Trans. Amer. Math. Soc. 347 (1995), 1391-1399
- DOI: https://doi.org/10.1090/S0002-9947-1995-1257124-1
- PDF | Request permission
Abstract:
From the perspective of the well-known identity \[ {}_2{F_1}(a,b;c;1) = \frac {{\Gamma (c)\Gamma (c - a - b)}} {{\Gamma (c - a)\Gamma (c - b)}},\] we clarify the connections between the Stirling numbers $s_k^n$ and the Riemann zeta function $\zeta (n)$. As a consequence, certain series and integrals can be evaluated in terms of $\zeta (n)$ and $s_k^n$.References
- B. C. Berndt, Ramanujan’s notebooks, part I, Springer-Verlag, New York, 1985.
D. Borwein and J. M. Borwein, On some intriguing sums involving $\zeta (4)$, preprint.
G. Polya and G. Szegő, Problems and theorems in analysis, Vol. I, Springer-Verlag, New York, 1972.
W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.
E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, 1958.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1391-1399
- MSC: Primary 11B73; Secondary 11M06, 11Y60, 33C05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1257124-1
- MathSciNet review: 1257124