THE EXPOSED POINTS OF THE SET OF INVARIANT MEANS

TIANXUAN MIAO

Abstract. Let G be a σ-compact infinite locally compact group, and let LIM be the set of left invariant means on $L^\infty(G)$. We prove in this paper that if G is amenable as a discrete group, then LIM has no exposed points. We also give another proof of the Granirer theorem that the set $LIM(X, G)$ of G-invariant means on $L^\infty(X, \beta, p)$ has no exposed points, where G is an amenable countable group acting ergodically as measure-preserving transformations on a nonatomic probability space (X, β, p).

1. Introduction and Notations

Let G be a locally compact group with a fixed left Haar measure λ. If G is compact, we assume $\lambda(G) = 1$. Let $L^p(G)$ be the associated real Lebesgue spaces ($1 \leq p \leq \infty$). For $f \in L^\infty(G)$ and $x \in G$, the left translation of f by x is defined by $xf(y) = f(xy)$, $y \in G$. A mean on $L^\infty(G)$ is a positive functional on $L^\infty(G)$ with $m(1) = 1$. A left invariant mean is a mean with $m(xf) = m(f)$ for any $x \in G$ and $f \in L^\infty(G)$. The set of left invariant mean on $L^\infty(G)$ is denoted by LIM.

If $LIM \neq \phi$, we say that G is amenable. Let G_d be the same algebraic group as G with a discrete topological structure. Then G is amenable if G_d is amenable. Properties of amenable groups and left invariant means can be found in Greenleaf [9], Paterson [10] and Pier [11].

When G is amenable, LIM, as a w^*-compact convex subset of $L^\infty(G)^*$, is the w^*-closed convex hull of all its extreme points. It is natural to ask how many exposed points LIM has. Granirer [4] studied intensively the existence of exposed points of LIM for a countable amenable semigroup (also see Chou [1]). In particular, he proved by using very general theorems that LIM has exposed points if and only if G has finite left ideals for a countable amenable semigroup G [4, Corollary 4.1]. Yang [15] proved that if G is a finite amenable discrete group, then LIM has no exposed points.

In this paper, we prove that LIM has no exposed points for any σ-compact locally compact group which is amenable as a discrete group. The idea of the proof is to "split" a nonnegative function in $L^\infty(G)$ by a category argument,
the technique used by Rosenblatt [12]. We also adapt this technique to prove the Granirer theorem of [5] and [6] in a different way that the set \(\text{LIM}(X, G) \) of \(G \)-invariant means on \(L^\infty(X, \beta, p) \) has no exposed points, where \(G \) is an amenable countable group acting ergodically as measure-preserving transformations on a nonatomic probability space \((X, \beta, p) \). He derives it using very general theorems. See Chou [2] and Rosenblatt [13] for details of the study of the set \(\text{LIM}(X, G) \).

The author would like to thank Professor E.E. Granirer for pointing out that Theorem 2 in this paper is a special case of his general theorems in [5] and [6] and for many valuable conversations.

2. Exposed points of \(\text{LIM} \)

In this section we will be concerned with \(\text{LIM} \) for a locally compact group and will prove our first main result. We need the following, probably known, proposition for which we were unable to find a reference.

Proposition 1. Let \(G \) be a nondiscrete locally compact group, and let \(K \) be a compact subset of \(G \). If \(f \in L^\infty(G) \) and \(\lambda\{t \in G : f(t) \neq 0\} \) is finite, then the function defined by

\[
F(x_1, x_2, \ldots, x_n) = \lambda\left\{ t \in G : \frac{1}{n} \sum_{i=1}^{n} x_i f(t) > a \right\}
\]

is lower semicontinuous on \(K^n \), where \(a \) is a constant.

Proof. First let us prove that \(\int_G |x f - f| \, dt \to 0 \) as \(x \to e \). If \(f = 1_E \), then \(\int_G |x f - f| \, dt = \lambda(x^{-1} E \Delta E) \to 0 \) as \(x \to e \) since the map \(x \to \lambda(x^{-1} E \cap E) \) is continuous from \(K \) to \(R \). For any \(f \) with \(\lambda\{t \in G : f(t) \neq 0\} \) finite and an \(\epsilon > 0 \), choose a simple function \(\varphi = \sum_{p=1}^{q} a_p 1_{E_p} \) such that \(\|f - \varphi\|_1 < \epsilon \). There exists an open neighborhood \(U \) of \(e \) such that \(\sum_{p=1}^{q} |a_p| \int_G 1_{E_p} - 1_{E_p} \, dt < \epsilon \) for any \(x \in U \). Hence, for every \(x \in U \),

\[
\int_G |x f - f| \, dt \leq \int_G |x f - x \varphi| \, dt + \int_G |x \varphi - \varphi| \, dt + \int_G |\varphi - f| \, dt \leq 3\epsilon.
\]

Let \(u^\alpha = (u_1^\alpha, u_2^\alpha, \ldots, u_n^\alpha) \) be a net and \(u = (u_1, u_2, \ldots, u_n) \in K^n \) with \(u^\alpha \to u \) in \(K^n \). If there is an \(\epsilon_0 > 0 \) such that \(F(u^\alpha) < F(u) - \epsilon_0 \), then we can find a \(\delta > 0 \) such that \(F(u^\alpha) < \lambda\{t \in G : \frac{1}{n} \sum_{i=1}^{n} u_i f(t) > a + \delta\} - \epsilon_0 \) for every \(\alpha \). Thus

\[
\int_G \left| \frac{1}{n} \sum_{i=1}^{n} u_i^\alpha f - \frac{1}{n} \sum_{i=1}^{n} u_i f \right| \, dt \leq \frac{1}{n} \sum_{i=1}^{n} \int_G |u_i^\alpha f - u_i f| \, dt \to 0
\]

when \(u^\alpha \to u \) in \(K^n \). On the other hand,

\[
\int_G \left| \frac{1}{n} \sum_{i=1}^{n} u_i^\alpha f - \frac{1}{n} \sum_{i=1}^{n} u_i f \right| \, dt \geq \int_{B_\alpha} \left| \frac{1}{n} \sum_{i=1}^{n} u_i^\alpha f - \frac{1}{n} \sum_{i=1}^{n} u_i f \right| \, dt \geq \delta \lambda(B_\alpha) \geq \delta \epsilon_0,
\]

where

\[
B_\alpha = \left\{ t \in G : \frac{1}{n} \sum_{i=1}^{n} u_i f(t) > a + \delta \right\} \sim \left\{ t \in G : \frac{1}{n} \sum_{i=1}^{n} u_i^\alpha f(t) > a \right\}
\]
with \(\lambda(B_\alpha) \geq \lambda\{t \in G : \frac{1}{n} \sum_{i=1}^{n} w_i f(t) > a + \delta \} - F(u^\alpha) > \epsilon_0 \). This is a contradiction. Therefore the function \(F \) from \(K^n \) to \(R \) is lower semicontinuous. \(\square \)

To prove our result, we will need the following two lemmas.

Lemma 2. Let \(G \) be a locally compact group and let \(f \in L^\infty(G) \) be a function with \(0 \leq f \leq 1 \) and \(\lambda\{x \in G : f(x) \neq 0\} < \infty \). If \(f_k \) is a sequence of functions in \(L^\infty(G) \) with \(0 \leq f_k \leq f \) (\(k = 0, 1, 2, \ldots \)), \(f_k \to f_0 \) in \(\| \cdot \|_1 \)-norm, then \(\inf_{(x_1, x_2, \ldots, x_n) \in K^n} F_k(x_1, x_2, \ldots, x_n) = 0 \) for any \(k \geq 1 \) implies \(\inf_{(x_1, x_2, \ldots, x_n) \in K^n} F_0(x_1, x_2, \ldots, x_n) = 0 \), where \(K \) is a compact subset of \(G \) and \(F_h(x_1, x_2, \ldots, x_n) = \lambda\{t \in G : \frac{1}{n} \sum_{i=1}^{n} x_i h(t) > a\} \) for any \(h \in L^\infty(G) \).

Proof. Let \(\inf_{(x_1, x_2, \ldots, x_n) \in K^n} F_0(x_1, x_2, \ldots, x_n) = \epsilon_0 > 0 \). Then for any \(x = (x_1, x_2, \ldots, x_n) \in K^n \), there is an \(i_x \in N \) such that \(\lambda\{t \in G : \frac{1}{n} \sum_{i=1}^{n} x_i f_0(t) > a + \frac{1}{i_x} \} > \frac{\epsilon_0}{2} \). Since the map \((y_1, y_2, \ldots, y_n) \mapsto \lambda\{t \in G : \frac{1}{n} \sum_{i=1}^{n} y_i f_0(t) > a + \frac{1}{i_0} \} \) from \(K^n \) to \(R \) is lower semicontinuous by Proposition 1, there exists an open neighborhood \(U_x \) of \(x \) in \(K^n \) such that \(\lambda\{t \in G : \frac{1}{n} \sum_{i=1}^{n} y_i f_0(t) > a + \frac{1}{i_0} \} > \frac{\epsilon_0}{2} \) for any \(y = (y_1, y_2, \ldots, y_n) \in U_x \). Let \(U_{x(1)}, U_{x(2)}, \ldots, U_{x(n)} \) be a cover of \(K^n \). Then for any \(y \in K^n \), \(\lambda\{t \in G : \frac{1}{n} \sum_{i=1}^{n} y_i f_0(t) > a + \frac{1}{i_0} \} > \frac{\epsilon_0}{2} \), where \(i_0 = \max\{i_{x(1)}, i_{x(2)}, \ldots, i_{x(n)}\} \).

By the hypothesis and the fact that \(K^n \) is compact, for each \(k \in N \), we can choose an \(x^k = (x^k_1, x^k_2, \ldots, x^k_n) \in K^n \) such that \(\lambda\{t \in G : \frac{1}{n} \sum_{i=1}^{n} x^k_i f(t) > a\} = 0 \). Then

\[
\int_G \left| \frac{1}{n} \sum_{i=1}^{n} x^k_i f_0(t) - \frac{1}{n} \sum_{i=1}^{n} x^k_i f_k(t) \right| dt \leq \|f_0 - f_k\|_1.
\]

On the other hand,

\[
\int_G \left| \frac{1}{n} \sum_{i=1}^{n} x^k_i f_0(t) - \frac{1}{n} \sum_{i=1}^{n} x^k_i f_k(t) \right| dt
\]

\[
= \int_{t \in G : \frac{1}{n} \sum_{i=1}^{n} x^k_i f_k(t) \leq a} \left| \frac{1}{n} \sum_{i=1}^{n} x^k_i f_0(t) - \frac{1}{n} \sum_{i=1}^{n} x^k_i f_k(t) \right| dt
\]

\[
\geq \frac{1}{i_0} \lambda\left\{ t \in G : \frac{1}{n} \sum_{i=1}^{n} x^k_i f_0(t) > a + \frac{1}{i_0} \right\}
\]

\[
\geq \frac{1}{i_0} \frac{\epsilon_0}{2}.
\]

This contradicts to that \(\|f_k - f_0\|_1 \to 0 \). \(\square \)

The following lemma is a consequence of Lemma 6A and Lemma 6C of Talagrand [14].

Lemma 3. Let \(G \) be a \(\sigma \)-compact nondiscrete locally compact group. If \(G \) is amenable as a discrete group and \(f \in L^\infty(G) \), then for any \(\epsilon > 0 \) there is an open subset \(\Omega \) of \(G \) and an \(m_0 \in LIM \) such that \(\lambda(\Omega) < \epsilon \), \(m_0(1_\Omega) = 1 \), and \(m_0(f) = \text{Sup}\{m(f) : m \in LIM\} \).

Proof. It follows from step 1 of the proof of Theorem 6D in [14] that for any positive integer \(n \), there exists an open set \(\Omega_n \) and an \(m_n \in LIM \) such that
Let m_0 be a w^*-limit point of $\{m_n\}$ and $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$. Then $\lambda(\Omega) < \epsilon$, $m_0 \in \text{LIM}$ with $m_0(1_\Omega) = 1$, and $m_0(f) = \text{Sup}\{m(f) : m \in \text{LIM}\}$. □

Now we are ready to prove our first main result concerning the exposed points of \text{LIM} for a locally compact group.

Theorem 1. Let G be a σ-compact infinite locally compact group. If G is amenable as a discrete group, then \text{LIM} has no exposed points.

Proof. When G is discrete, it is proved by Yang [15] that \text{LIM} has no exposed points. Assume that G is nondiscrete. Since G is σ-compact, there is a sequence of subsets $\{K_n : n \in \mathbb{N}\}$ such that $G = \bigcup_{n=1}^{\infty} K_n$, where K_n is compact and $K_n \subseteq K_{n+1}$ ($n = 1, 2, \ldots$). Assume that $m_0 \in \text{LIM}$ is an exposed point of \text{LIM}. Then there is an $f_0 \in L^1(G)$ such that

\[(*) \quad m_0(f_0) > m(f_0) \quad \text{for any } m \in \text{LIM} \text{ and } m \neq m_0. \]

We are going to show that we can choose f_0 as above such that $0 \leq f_0 \leq 1$ and $f_0 \in L^1(G)$. Let $f_1 = \frac{f_0 + \|f_0\|_\infty}{\|f_0 + \|f_0\|_\infty\|_\infty}$. Then f_1 also satisfies (*) since $f_1 \geq 0$ and $m(1) = 1$ for all $m \in \text{LIM}$. Thus, $m_0(f_1) > 0$ by the fact that $\text{LIM} \neq \{m_0\}$ (see [7]). By Lemma 3, there exists an open subset Ω of G and an $m_1 \in \text{LIM}$ such that $\lambda(\Omega) < 1$, $m_1(1_\Omega) = 1$, and $m_1(f_1) = \text{Sup}\{m(f_1) : m \in \text{LIM}\}$. Hence $m_1(f_1) = m_0(f_1)$ and $m_1 = m_0$ by (*). Let $g = f_11_\Omega$. Then g satisfies (*). In fact, for any $m \in \text{LIM} \sim \{m_0\}$, $m(g) = m(f_11_\Omega) \leq m(f_1) < m_0(f_1) = m_0(g)$ since $m_0(f_11_{G^\sim}) = m_1(f_11_{G^\sim}) = 0$. Note that $g \geq 0$ and $g \in L^\infty(G) \cap L^1(G)$. Let $X = \{f \in L^\infty(G) : 0 \leq f \leq g\}$ and $a = m_0(g)$. Then $(X, ||\cdot||_1)$ is a complete metric space and $a > 0$.

Let $n \in \mathbb{N}$ and $n > 0$ be fixed. For any $p, q \in \mathbb{N}$, put

$$X_{p, q} = \left\{ f \in X : \exists x_1, x_2, \ldots, x_p \in K_q \right\}.$$

with

$$\lambda \left\{ t \in G : \frac{1}{p} \sum_{i=1}^{p} x_i f(t) > a - \frac{1}{n} \right\} = 0.$$

At first, each $X_{p, q}$ is closed. In fact, let $f_k \in X_{p, q}$ and $f_k \to f$ in $(X, ||\cdot||_1)$. By Lemma 2,

$$\inf_{(x_1, x_2, \ldots, x_p) \in K^p_q} \lambda \left\{ t \in G : \frac{1}{p} \sum_{i=1}^{p} x_i f(t) > a - \frac{1}{n} \right\} = 0.$$

By Lemma 1, the map $(x_1, x_2, \ldots, x_p) \rightarrow \lambda \left\{ t \in G : \frac{1}{p} \sum_{i=1}^{p} x_i f(t) > a - \frac{1}{n} \right\}$ from K^p_q to R is lower semicontinuous. Since K^p_q is compact, there exists $(x_1, x_2, \ldots, x_p) \in K^p_q$ such that $\lambda \left\{ t \in G : \frac{1}{p} \sum_{i=1}^{p} x_i f(t) > a - \frac{1}{n} \right\} = 0$. Therefore, $f \in X_{p, q}$.

Also, $X_{p, q}$ is nowhere dense. In fact, for any $f \in X$ and any $\epsilon > 0$, by Lemma 3 there is an open subset Ω_1 of G and an $m_1 \in \text{LIM}$ such that $\lambda(\Omega_1) < \epsilon$, $m_1(1_{\Omega_1}) = 1$, and $m_1(g) = \text{Sup}\{m(g) : m \in \text{LIM}\}$. Since
g satisfies (*), \(m_1 = m_0 \). Let \(f^* = g 1_{\Omega_1} + f 1_{G \setminus \Omega_1} \). Then \(f^* \in X \) and
\[||f^* - f||_1 = ||g 1_{\Omega_1} - f 1_{\Omega_1}|| < 2\varepsilon. \]
Since \(m_0(f^*) = m_0(g 1_{\Omega_1}) = m_0(g) = a > a - \frac{1}{n} \), \(\lambda(t \in G : \frac{1}{p} \sum_{i=1}^{p} x_i f^*(t) > a - \frac{1}{n}) \neq 0 \) for any \((x_1, x_2, \ldots, x_p) \in K_q^p\).
Hence \(f^* \notin X_{p,q} \).

For any \(p, q \in N \), let \(X_{p,q}^c = \{ f \in X : g - f \notin X_{p,q} \} \). Then \(X_{p,q}^c \) and
\(X_{p,q} \) are isometric in \((X, ||\cdot||_1)\). So \(X_{p,q}^c \) is also nowhere dense in \((X, ||\cdot||_1)\). Hence there exists an \(f \in X \sim \bigcup_{p,q} \left(X_{p,q} \cup X_{p,q}^c \right) \) by the completeness of \(X \).

For any \(x_1, x_2, \ldots, x_p \in G \), there is \(q \in N \) such that \(x_1, x_2, \ldots, x_p \in K_q \). Thus, \(\lambda(t \in G : \frac{1}{p} \sum_{i=1}^{p} x_i (f(t) > a - \frac{1}{n}) \neq 0 \) since \(f \notin X_{p,q} \). There exists \(m_n \in \text{LIM} \) such that \(m_n(f) > a - \frac{1}{n} \) by Proposition 3 of [7]. Similarly, since for any \(x_1, x_2, \ldots, x_p \in G \), \(\lambda(t \in G : \frac{1}{p} \sum_{i=1}^{p} x_i (g-f)(t) > a - \frac{1}{n}) \neq 0 \), there exists \(M_n \in \text{LIM} \) such that \(M_n(g-f) > a - \frac{1}{n} \). Let \(m \) and \(M \) be \(\omega^* \) limit points of \(m_n \) and \(M_n \), respectively. Then \(m, M \in \text{LIM} \) and \(m(f) \geq a \) and
\(M(g-f) \geq a \). Since \(0 \leq f \leq g \) and \(0 \leq g-f \leq g \), \(m(g) \geq a \) and \(M(g) \geq a \). Hence \(m = M = m_0 \) by (*) and since \(a = m_0(g) = \text{Sup}\{m(g) : m \in \text{LIM}\} \). Therefore \(M(g-f) = 0 \). This contradicts \(a > 0 \). \(\square \)

3. Exposed points of \(\text{LIM}(X,G) \)

In this section we are going to prove an analogue of Theorem 1 for groups acting ergodically as measure-preserving transformations on a nonatomic probability space \((X, \beta, \mu)\).

Let \((X, \beta, \mu)\) be a nonatomic probability space, \(G \) a group, and \((s,x) \rightarrow sx \) a measure-preserving ergodic action of \(G \) on \((X, \beta, \mu)\). Then \(G \) also acts on \(L^\infty(X, \beta, \mu) : (sf)(x) = f(sx), f \in L^\infty(X, \beta, \mu), s \in G, \) and \(x \in X \). A positive linear functional of norm 1 on \(L^\infty(X, \beta, \mu) \) is said to be \(G \)-invariant mean if \(m(sf) = m(f) \) for \(s \in G \) and \(f \in L^\infty(X, \beta, \mu) \). The set of \(G \)-invariant means is denoted by \(\text{LIM}(X,G) \).

It is natural to ask how big the set \(\text{LIM}(X,G) \) is. When \(G \) is a countable amenable semigroup, del Junco and Rosenblatt [3] proved \(\text{LIM}(X,S) \) contains more than one element. Chou [2] showed that the cardinality of \(\text{LIM}(X,G) \) is at least \(2^c \) for any countable amenable group, where \(c \) is the cardinality of the continuum. Our Theorem 2 shows that \(\text{LIM}(X,G) \) does not have exposed points in the case that \(G \) is an amenable countable group acting ergodically as measure-preserving transformations on a nonatomic probability space. This theorem was proved by Granirer in Theorem 3 in [5] and Theorem 2.6 in [6] without the assumptions of the ergodical acting and the measure-preserving transformations. Here we will give a different and direct proof.

Lemma 4. Let \(G \) be a group acting ergodically as measure-preserving transformations on a nonatomic probability space \((X, \beta, \mu)\). If \(m \in \text{LIM}(X,G) \) and \(f \in L^\infty(X) \) with \(0 \leq f \leq 1 \), then for any \(x_1, x_2, \ldots, x_n \in G, \epsilon > 0, \) and \(\delta > 0 \) there exists a subset \(V \) of \(X \) such that \(\mu(V) < \epsilon \) and
\[\mu \left\{ t \in X : \frac{1}{n} \sum_{i=1}^{n} x_i (f 1_{V})(t) > m(f) - \delta \right\} \neq 0. \]

Proof. Let \(a = m(f) \). Since \(m(\frac{1}{n} \sum_{i=1}^{n} x_i f) = a \), \(p \{ t \in X : \frac{1}{n} \sum_{i=1}^{n} x_i f(t) > a - \delta \} > 0 \). Hence there is a subset \(J \subseteq \{1, 2, \ldots, n\} \) and \(a_i \) for each \(i \in J \).
such that $\frac{1}{n} \sum_{i \in J} a_i > a - \delta$ and $p(\bigcap_{i \in J} \{ t \in X : x_i f(t) > a_i \}) > 0$. Let $E_{a_i} = \{ t \in X : f(t) > a_i \}$. Then $\{ t \in X : x_i f(t) > a_i \} = \{ t \in X : x_i t \in E_{a_i} \}$, which is denoted by $x_i^{-1} E_{a_i}$. Hence $p(\bigcap_{i \in J} x_i^{-1} E_{a_i}) > 0$. Since X is nonatomic, there exists $A \subseteq \bigcap_{i \in J} x_i^{-1} E_{a_i}$ such that $0 < p(A) < \frac{1}{n} \epsilon$. Let $V = \bigcup_{i \in J} x_i A$. Then $0 < p(V) < \epsilon$. If $t \in A$, then $x_i t \in V \cap E_{a_i}$ for each $i \in J$. Hence $x_i(fV)(t) = fV(x_i t) f(x_i t) > a_i$, i.e. $A \subseteq \bigcap_{i \in J} \{ t \in X : x_i (fV)(t) > a_i \}$ and $0 < p(A)$.

The following lemma is due to Granirer. See [7, Proposition 3] and [8, Proposition 5] for its proof.

Lemma 5. Let G be a group acting ergodically as measure-preserving transformations on a nonatomic probability space (X, β, μ). If $m \in LIM(X, G)$ and $f \in L^\infty(X)$, then

$$\sup \{ m(f) : m \in LIM(X, G) \} = \inf \text{ess sup}_t \left[\frac{1}{n} \sum_{i=1}^{n} x_i f(t) \right].$$

Theorem 2 (Granirer). If G is a amenable countable group acting ergodically as measure-preserving transformations on a nonatomic probability space (X, β, μ), then the set $LIM(X, G)$ of G-invariant means on $L^\infty(X)$ has no exposed points.

Proof. Let $G = \bigcup_{n=1}^{\infty} K_n$, where each K_n is a finite subset of G and $K_n \subseteq K_{n+1}$ $(n = 1, 2, \ldots)$. Let $m_0 \in LIM(X, G)$ be an exposed point of $LIM(X, G)$. Then there is an $f_0 \in L^\infty(X)$ such that

$$(*)_n \quad m_0(f_0) > m(f_0) \quad \text{for any } m \in LIM(X, G) \text{ and } m \neq m_0.$$

Let $g = \frac{f_0 + \| f_0 \|_{L^\infty}}{\| f_0 + \| f_0 \|_{L^\infty}}$. Then g also satisfies $(*)_n$ since $m(1) = 1$ for any $m \in LIM(X, G)$. Note that $g \in L^\infty(X) \cap L^1(X)$ and $g \geq 0$. Thus $m(g) \geq 0$ for any $m \in LIM(X, G)$. By $(*)_n$ and the fact that $M(X, G)$ contains more than one element (see del Junco and Rosenblatt [3]), $m_0(g) > 0$. Let $a = m_0(g)$ and $Y = \{ f \in L^\infty(X) : 0 \leq f \leq g \}$. Then $(Y, \| \cdot \|_1)$ is a complete metric space and $a > 0$. For any $n \in N$ and $\delta > 0$, set

$$X_n = \left\{ f \in Y : \exists x_1, x_2, \ldots, x_k \in K_n \text{ with } p \left\{ t \in X : \frac{1}{k} \sum_{i=1}^{k} x_i f(t) > a - \delta \right\} = 0 \right\}.$$

At first, each Y_n is closed. In fact, let $f_k \in Y_n$ and $f_k \to f$ in $(Y, \| \cdot \|_1)$. We can assume that $f_k \to f$ a.e. $[\mu]$. So for any $x_1, x_2, \ldots, x_r \in K_n$

$$\frac{1}{r} \sum_{i=1}^{r} x_i f_k(t) - \frac{1}{r} \sum_{i=1}^{r} x_i f(t) \quad \text{a.e. } [\mu] \text{ as } k \to \infty.$$

Also, for each k, there are $x_1, x_2, \ldots, x_r \in K_n$ such that

$$p \left\{ t \in X : \frac{1}{r} \sum_{i=1}^{r} x_i f_k(t) > a - \delta \right\} = 0.$$
Since K_n is finite, there are $x_1, x_2, \ldots, x_r \in K_n$ such that

$$p \left\{ t \in X : \frac{1}{r} \sum_{i=1}^{r} x_i f(t) > a - \delta \right\} = 0.$$

Thus, $f \in Y_n$. Therefore Y_n is closed.

Also, for any $f \in Y$ and any $\epsilon > 0$, for any $x_1, x_2, \ldots, x_r \in K_n$, by Lemma 4, there is a subset V of X such that $p(V) < \epsilon$ and

$$p \left\{ t \in X : \frac{1}{r} \sum_{i=1}^{r} x_i (g_1 V)(t) > a - \delta \right\} > 0.$$

Let $f^* = g_1 V + f^1 X_{X \rightarrow V}$. Then $f^* \in Y$ and $\|f^* - f\|_1 = \|g_1 V - f^1 V\|_1 < 2\epsilon$.

Since $f^1 X_{X \rightarrow V} \geq 0$,

$$0 < p \left\{ t \in X : \frac{1}{r} \sum_{i=1}^{r} x_i (g_1 V)(t) > a - \delta \right\} \leq p \left\{ t \in X : \frac{1}{r} \sum_{i=1}^{r} x_i f^*(t) > a - \delta \right\}.$$

Hence $f^* \notin Y_n$ and Y_n is nowhere dense.

For any $n \in \mathbb{N}$, let $Y_n^c = \{ f \in Y : g - f \notin Y_n \}$. Then Y_n and Y_n^c are isometric in $(Y, \| \cdot \|_1)$. So Y_n^c is also nowhere dense in $(Y, \| \cdot \|_1)$. Hence there exists an $f \in Y \sim \bigcup_n (Y_n \cup Y_n^c)$ by the completeness of Y.

For any $x_1, x_2, \ldots, x_n \in G$, since $p\{t \in X : \frac{1}{n} \sum_{i=1}^{n} x_i f(t) > a - \delta\} > 0$, by Lemma 5 there exist $m_\delta \in \text{LIM}(X, G)$, such that $m_\delta(f) > a - \delta$. Let m be the w^* limit point of $\{m_\delta\}$. Then $m \in \text{LIM}(X, G)$ and $m(f) \geq a$. Similarly, since for any $x_1, x_2, \ldots, x_n \in G$, $p\{t \in X : \frac{1}{n} \sum_{i=1}^{n} x_i (g - f)(t) > a - \delta\} > 0$, there exists $M \in \text{LIM}(X, G)$ such that $M(g - f) \geq a$. Since $0 \leq f \leq g$, $m(g) \geq a$ and $M(g) \geq a$. By (*), $m = M = m_0$. So $M(g - f) = 0$. This contradicts $a > 0$. \qed

References

Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario P7E 5E1 Canada
E-mail address: tmiao@thunder.lakeheadu.ca