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INVERSE THEOREMS FOR SUBSET SUMS

MELVYN. B. NATHANSON

Abstract. Let A be a finite set of integers. For h > 1 , let S^ (A) denote the

set of all sums of h distinct elements of A . Let S(A) denote the set of all

nonempty sums of distinct elements of A . The direct problem for subset sums

is to find lower bounds for |5^(/4)| and \S{A)\ in terms of \A\ . The inverse

problem for subset sums is to determine the structure of the extremal sets A

of integers for which |S/,(/4)| and \S(A)\ are minimal. In this paper both the

direct and the inverse problem for subset sums are solved.

1. Introduction

Let A = {ao, ax, ... , flfc-i} be a finite set of integers, and let \A\ = k . For
any nonempty subset A' of A we define the subset sum s(A') by

s(A') = Y°-
aeA'

Let s(0) = 0. For h = 0, 1,2, ... , k let

Sh(A) = {s(A')\A'CA,\A\ = h}.

The set Sn(A) is the set of all sums of h distinct elements of A . In particular,

S0(A) = {0}, SX(A) = A, and Sk(A) = {a0 + ax + ■■■ + ak-X} . The set

k

S(A) = [JSh(A) = {s(A')\0?A'CA}
h=i

is the set of all nonempty sums of distinct elements of A . The direct problem

for subset sums is to find lower bounds for |S/,(y4)| and \S(A)\ in terms of \A\.
The inverse problem for subset sums is determine the structure of the finite sets

A of integers for which |5^(/4)| and \S(A)\ are minimal. In this paper we shall

solve both the direct and the inverse problem for subset sums.

Notation. For any finite set A of integers, let \A\ denote the cardinality of

A, let max(A) denote the largest element of A, and let min(^) denote the
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1410 M. B. NATHANSON

smallest element of A . If A' c A , then A\A' denotes the complement of A'
in A . For any integer d, let

d + A = {d+ a\a £ A}   and   d * A = {da\a £ A}.

Let [u, v] denote the interval of integers n such that u < n < v . A k-term

arithmetic progression is a set of the form

(1) {a0,a0 + d, a0 + 2d, ... ,ao + (k-l)d} = a0 + d*[0, k-l],

where «o and d are integers and d > 1. The integer part of the real number

x is denoted [x].

2. The direct problem for Sn(A)

Let h£[0,k] and let A' CA, \A'\ = h . Then \A\A'\ =k-h and

s(A) - s(A') = s(A\A').

This identity establishes a natural bijection

X:Sh(A)^Sk.h(A)

defined by

(2) X(s(A')) = s(A\A').

It follows that

(3) \Sh(A)\ = \Sk_h(A)\

for h = 0, 1,..., k.

Theorem 1. Let A be a set oj k integers, and let h £ [0, k]. Then

\Sh(A)\ >hk-h2+l=h(k-h) + l.

Prooj. Let A = {ao, ax, ... , ak_x}, where flo < ax < • • • < ak_x .  For i =

0, 1, ... , k — h— 1 and j = 0,l,...,h,we define

h

(4) s\H) = Si,j=   Y   aM
1=0

l^h-j

and

h-l

(5) S{kh\0 = Sk_hto = Yak-h+l-
1=0

Each of these numbers is a sum of h distinct elements of A, and so s, j £ Sn(A)

for all i and j. Moreover, for / = 0, 1,..., k—h—1 and j = 0, 1,..., h-l,
we have

■S/.j+l _ si,j = O-l+h-j - ai+h-j-l > 0

and
A h-l

si,h = Ya'+I = Ya'+l+l = S'+U0-
1=1 1=0

Therefore,

Si,0<Si,X <5,,2 < ••• <Sj\A-l <Sj,h =5,+ i>0License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and so

\Sh(A)\ >h(k-h)+l = hk-k2 + l.

This completes the proof.

3. The inverse problem for Sn(A)

If A = [0,k- 1], then

Sh(A)=[Q,hk-(h+2l^ = Q+[0,hk-h2]

and so

(6) \Sh(A)\ = hk - h2 + I =h(k-h) + l.

This shows that the lower bound in Theorem 1 is best possible.  The inverse

problem for Sf,(A) is to find all sets A of k integers that satisfy (6).

If a and d are integers and d ^ 0, then

Sh(a + d*A) = ha + d*Sh(A),

and so

(7) \Sn(a + d*A)\ = \Sn(A)\.

This means that the function |S^(^)| is an affine invariant of the set A . Since

every interval of length k satisfies condition (6), it follows from (1) and (7)

that every A:-term arithmetic progression also satisfies (6).

Let \A\ = k and h £ [0, k]. The symmetry (3) implies that if A is an arith-
metic progression whenever |Sa(.<4)| satisfies (6), then A is also an arithmetic

progression whenever \Sk^n(A)\ satisfies (6).

Not all extremal sets are arithmetic progressions. Here are some examples:

(i) If h = 0 or h = k, then h(k - h) + 1 = 1 and \S0(A)\ = Sh(A)\ = 1
for every set A .

(ii) If h = 1 or A = ifc-l,then h(k-h)+l =k and \Sx(A)\ = \Sh_x(A)\ =
k for every set A .

(iii) If h = 2 and k = 4, then h(k - h) + 1 = 5 . Let

A = {a0,ax,a2, a3}

be a set of integers such that flo < fli < a2 < fl3. Then

S2(A) = {fl0 + fli, fl0 + a2, flo + fl3, fli + a2, ax + a3, a2 + fl3}

and so 5 < \S2(A)\ < 6. Since

flo + fli < flo + a2 < fl0 + fl3 < fli + fl3 < a2 + fl3

and

flo + a2 < fli + a2 < ax + a3,

it follows that \S2(A)\ = 5 if and only if

flo + a3 = fli -I- fl2.

Thus, {flo, fli, a2, a2 + ax - flo} is an extremal set for all ao < ax < a2.

We shall prove that these three examples are the only examples of extremal sets

for |^(^)| that are not arithmetic progressions.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 2. Let k > 5 flttfl" let 2 < h < k -2. Ij A is a set oj k integers such
that

\Sh(A)\ = hk-h2 + l,

then A is an arithmetic progression.

Prooj. Let A = {ao, ax, ... , ak_x), where

a0 < «i < •■• <ak_x.

It follows from the proof of Theorem 1 that the set A consists of the numbers

Si j defined in (4) and (5). Let i = 0, I, ... , k - h -2 and j = 2, 3, ... , h .
Then

h-l

S'J=    Y   a'+l + ai+h
1=0

l*h-j

and

S,,l <S,,2 <Si,3 <■    <Si<h =S/+i,o <Si+x,x.

Consider the integers

h-l

U'J =      E      a<+l + ai+h+\ € Sh(A)-
1=0

lfih+X-j

Since

Si,l < W/,2 < "1,3 < ••• < Ui>h <Si+x,X,

it follows that Sij = Ujj and so

Oi+h-j+l + ai+h - ai+h-j + ai+h+l

for i = 0, I ... , k - h -2 and j = 2, 3, ... , h . Thus,

ai+h-j+l ~ ai+h-j ~ flj+A+1 _ fl/+/i

and

fl,+ l -A/ = A/+2 -A/+1 = •••

= O-i+h-2 ~ Qi+h-T,

= ai+h-l ~ ai+h-2

= ai+h+l ~ ai+h

for i = 0, 1, ... ,k-h-2. We shall show that

<*i+h - ai+h-l = ai+l ~ ai-

For any i>\ we have

ai+h - ai+h-l = ai-l+(h+l) ~ ai-l+h

= <3/-I+(A-l) _ fli-l+(A-2)

= ai+h-2 ~ A/+/I-3

= ai+x -a,.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let i = 0.   We must show that fl/, - fl/,_i = fli - flo-   If h < k - 2, then

1 < k - h - 2 and
ah - O-h-l = al+(h-l) ~ al+{h-2)

= fll+(A-2) - Al+(A-3)

= ®h-l - ah-2

= fli - fl0.

It follows that
a,- -a,_i = fli -fl0

for i = 0, I, ... , k - 1, and so A is an arithmetic progression. If h = k - 2,
then we consider |S2(-<4)| • By (3),

\S2(A)\ = \Sk_2(A)\ = 2(k-2) + l.

Since 2 < k - 2 for k > 5, it follows that A is an arithmetic progression. This
completes the proof.

4. The direct problem for S(A)

Theorem 3. Let k > 2. Ij A is a set oj k positive integers, then

ism>-(k+21}

Ij A is a set oj k nonnegative integers and 0 £ A, then

\S(A)\>1 + Q.
Prooj. Let A = {a0, ax, ... , ak_x}, where flo < fli < • • • < fl^-i .  For h =
1, ... , k, let

(8) Bn = {a, + ak_n+x +ak_h+2 + ■ ■■ + ak_x\i = 0, l...,k-h}.

Then

Bh C Sh(A) C S(A)

and

\Bh\ = k-h + l.

If A is a set of positive integers, then a0 > 1 and

ma\(Bh) = ak_h + ak_h+x +■■■ + ak_x

< flo + ak_h + ak_h+x +■■■ + ak_x

= min(73A+i).

It follows that the sets Bx, B2, ... , Bk are pairwise disjoint, and so

k k k

\S(A)\>   \jBh  =Y\Bh\ = Y(k-h+l)=(kV)-
h=l h=l h=X V '

If A is a set of nonnegative integers and flo = 0, then

S(A) = {0}US(A\{0})

and ^4\{0} is a set of k - 1 positive integers. Therefore,

\S(A)\>l + \S(A\{0})\>l+(^j.

This completes the proof.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let k>2. If A0 = [0, k- 1] and Ax =[1, k], then

S(4>) =   0, Q]     and   5(^,)=   1. f^)   ■

These examples show that the lower bounds in Theorem 3 are best possible.

Theorem 4. Let k>2, and let A be a set oj k integers. Ij 0 £ A, then

\S(A)\>[k2/4]+l.

IjO i A, then

\s(A)\>[(k + i)2m + i.
Prooj. If \A\ = 2, then |5(^)| = 2 if 0 e A and \S(A)\ = 3 if 0 i A.
Let k > 3. Since (k) > k2/4 for k > 3, we can assume that A contains

both positive and negative integers. Let A contain p positive integers and n

negative integers. By Theorem 3, the set S(A) contains at least (fl^) positive

integers and at least ("J") negative integers. If 0 £ A C S(A), then k = p+rt+1

and

^C;'MT)+'

= p2-(k- l)p + (k2-k + 2)/2

= (p-(k-l)/2)2 + (k2 + 3)/4

>(k2 + 3)/4,

and so \S(A)\ > [k2/4] + 1.
If 0 i A, then

k = p + n.

Let po be the smallest positive integer in A , and let -«o be the largest negative

integer in A. The set S(A) contains at least CJ1) positive numbers, each

greater than or equal to po , and S(A) contains at least ("J1) negative numbers,

each less than or equal to -«o • The set S(A) also contains the integer po - «o •

Since

-n0 <p0-n0<Po,

it follows that

^CrMT)+'

= p2-kp + (k2 + k + 2)/2

= (p-k/2)2 + ((k+l)2 + 3)/4

>((k+l)2 + 3)/4,

and so

|S(/l)|>[(/c+l)2/4] + l.

This completes the proof.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let k = 2m be an even integer. If A = [-m, m - 1], then \A\ = k, 0 £ A ,
and

«4>-[-("2+ ')■(?)]■

hence

l^)l=(m2+1) + (2) + l=^ + l = ^2/4]+l.

If ^ = [-ni, m]\{0} , then |^| = k, 0 i A, and

^>=[-(TMV)]-
hence

|5(^)| = 2(m^ l\ + 1 = m2 + m + 1 = [(A: + l)2/4] + 1.

Let k = 2m + 1 be an odd integer. If A = [-m, m], then \A\ = k, 0 £ A , and

™-HmV)>(mV)]-

hence

\S(A)\ = 2 ("£\ + 1 = m2 + m + 1 = (k2 + 3)/4 = [k2/4] + 1.

Finally, if A = \-m, m + 1]\{0} , then \A\ = k,0 i A, and

sw-i-cw;*)].
hence

|^)|=(m + 1) + (W2+2) + l=m2 + 2m + 2 = [(A:+l)2/4]+l.

These examples show that the lower bounds in Theorem 4 are best possible.

5. The inverse problem for S(A)

Let k > 3 and let A0 = [0, k - 1] and Ax = 1 + A0 = [1, k]. Since

\S(Ao)\ = l+(k2^<(k^l^ = \Sx(A)\,

we see that \S(A)\  is not translation invariant.   However, if fl" is a nonzero
integer, then

S(d * a) = d * S(A)

and so

\S(d*A)\ = \S(A)\.

Thus, |S(^4)| is invariant under scalar multiplication.

The inverse problem for S(A) is to find the extremal sets A that satisfy

the lower bounds in Theorem 3 and in Theorem 4. We shall prove that every

extremal set is a scalar multiple of an interval.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 5. Let k > 3. Ij A is a set oj k positive integers such that \S(A)\ =

(kf), then
A = d*[l,k]

jor some positive integer d. Ij A is a set oj k nonnegative integers such that

0£A and \S(A)\= 1 + (*), then

A = d*[0,k- 1]

jor some positive integer d.

Proof. Let A = {ao, ax, ... , ak_x}, where a0 < fli < • • • < ak_x . If flo > 1,
then it follows from the proof of Theorem 3 that

h

S(A) = \jBh,
1=1

where Bh is the set defined in (8). For h = 1, ... , k - 1, we have

O-k-h-l + ak-h+l + ak-h+2 H-H ak_x

< ak_h + ak_h+x + ak_h+2 + ■•■ + ak_x = max(Bh)

< flo + ak_h + ak_h+x + ak_n+2 + ■■■ + ak_x = min(Bh+x)

and
O-k-h-l + ak-h+l + Qk-h+2 H-1" flfc_i

< Oo + Clk-h-\ + ak-h+l + ak-h+2 H-^ ak-l

< fl0 + ak_h + flfc_/,+ i + flfc-/,+2 H-r- fl^-l •

It follows that

ak-h + ak-h+l + ak-h+2 H-1" flfc-1

= a0 + flfc-A-1 + A/c-A+1 + O-k-h+2 H-1" flfc-1

and so

ak-h — a0 + O-k-h-l

for h = 1, ... , k - I . Thus,

fl0 = fli - flo = fl2 - Ai = • • • = flfc-i - flfc-2

and so

A = d*[l,k]

with d = ao .
If flo = 0, then /1\{0} is a set of k - 1 positive integers, and 5(^4\{0}) is

a set of positive integers. Since

S(A) = {0}US(A\{0}),

it follows that

|5(^\{0})| = Q
and so ^\{0} = d* [1, k - 1] for d = ax > 1 . Thus,

A = d*[0, k- 1].

This completes the proof.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 6. Let k > 3, and let A  be a set of k  integers.   If 0 £ A  and
\S(A)\ = [k2/4] + 1, then there is a nonzero integer d such that

{d * [-m, m] ifk = 2m + 1,

d *[-m, m- 1]   ifik = 2m.

Ij 0 £ A and \S(A)\ = [(k + l)2/4] + 1, then there is a nonzero integer d such
that

( d*[-m, m]\{0} ijk = 2m,

~ 1 d*[-m, m+ 1]\{0}   ijk = 2m+l.

Prooj. The conditions on  \S(A)\  imply that A  contains p positive and n
negative integers, where p > 1 and n > 1 . If 0 £ A , then k = p + n + 1 and

[A:2/4]+ 1 = \S(A)\

= (p-(k-l)/2)2 + (k2 + 3)/4

>(k2 + 3)/4.

It follows that

i5<„i=1+(';>(-'),

and
_ TO if k = 2m + 1 is odd,

P_(   ~   ''    "I ±1/2   if k = 2m is even,

that is,
J m if k = 2m + 1 is odd,

\ m or m - 1 if k = 2m is even.

Suppose that k = 2m + 1 . Then p = n = m. Since \S(A)\ contains exactly

(m2l) positive integers and exactly C"^"1) negative integers, it follows from

Theorem 5 that there exist positive integers po and «0 such that the positive

part of A is p0*[l, m] and the negative part of A is -«0 *[l, m]. Since

0, Po - "o £ S(A) and -n0 < Po - "o < Po > it follows that po - «o = 0. Let
d = po . Then

A = d * [-m, m\.

The proof in the case k = 2m is similar.

If 0 ^ A , then k = p + n and

[<*+l)V4] + 1=|5(^)| >('+') + (" + ') + ■

= (p-(k/2))2 + ((k+l)2 + 3)/4

> ((k+l)2+ 3)/4,

and the proof proceeds as above.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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6. Remarks

There is a large and growing literature on subset sums (for example, Sarkozy

[4]) and on inverse problems in additive number theory, but the inverse theo-

rems on subset sums do not seem to have been previously observed. It would

be interesting to extend these results in the following way: Let A be a set of k

integers such that |5^(^)| is "small." Is A a "large" subset of some arithmetic

progression? If \A\ = k and if 2A denotes the set of all sums of 2 elements of

A with repetitions allowed, and if \2A\ = 2k - I + b < 3k - 4, then Freiman [1]
(see also Nathanson [2]) proved that A is a subset of an arithmetic progression

of length k + b . Does a similar result hold for subset sums?

A comprehensive account of inverse theorems in additive number theory can

be found in Nathanson [3].
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