Groups with no free subsemigroups

Authors:
P. Longobardi, M. Maj and A. H. Rhemtulla

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1419-1427

MSC:
Primary 20F16; Secondary 20F60

DOI:
https://doi.org/10.1090/S0002-9947-1995-1277124-5

MathSciNet review:
1277124

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We look at groups which have no (nonabelian) free subsemigroups. It is known that a finitely generated solvable group with no free subsemigroup is nilpotent-by-finite. Conversely nilpotent-by-finite groups have no free subsemigroups. Torsion-free residually finite- groups with no free subsemigroups can have very complicated structure, but with some extra condition on the subsemigroups of such a group one obtains satisfactory results. These results are applied to ordered groups, right-ordered groups, and locally indicable groups.

**[1]**H. Bass,*The degree of polynomial growth of finitely generated nilpotent groups*, Proc. London Math. Soc. (3)**25**(1972), 603-614.**[2]**R. Botto Mura and A.H. Rhemtulla,*Orderable groups*, Dekker, 1977.**[3]**P.F. Conrad,*Right ordered groups*, Michigan Math. J.**6**(1959), 267-275.**[4]**L. Fuchs,*Partially ordered algebraic systems*, Pergamon Press, 1963.**[5]**R. I. Grigorchuk,*On the growth degrees of*-*groups and torsion-free groups*, Math. Sb.**126**(1985), 194-214; English transl. Math. USSR-Sb.**54**(1986), 347-352.**[6]**R. I. Grigorchuk and A. Machi,*An intermediate growth automorphism group of the real line*, preprint.**[7]**N. Gupta and S. Sidki,*Some infinite*-*groups*, Algebra i Logika**22**(1983), 584-589.**[8]**E. Hecke,*Lectures on the theory of algebraic numbers*, Translated by George U. Brauer and Jay R. Goldman, Springer-Verlag, 1981.**[9]**Y. K. Kim and A. H. Rhemtulla,*Weak maximality condition and polycyclic groups*.**[10]**P. H. Kropholler,*Amenability and right orderable groups*, Bull. London Math. Soc.**25**(1993), 347-352.**[11]**J. Milnor,*Growth of finitely generated solvable groups*, J. Differential Geom.**2**(1968), 447-449.**[12]**J. M. Rosenblatt,*Invariant measures and growth conditions*, Trans. Amer. Math. Soc.**197**(1974), 33-53.**[13]**A. Shalev,*Combinatorial conditions in residually finite groups*, II, J. Algebra**157**(1993), 51-62.**[14]**S. Wagon,*The Banach-Tarski paradox*, Cambridge University Press, 1985.**[15]**J. Wolf,*Growth of finitely generated solvable groups and curvature of Riemannian manifolds*, J. Differential Geom.**2**(1968), 421-446.**[16]**E. I. Zelmanov,*On some problems of group theory and lie algebras*, Math. USSR-Sb.**66**(1990), 159-168.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20F16,
20F60

Retrieve articles in all journals with MSC: 20F16, 20F60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1277124-5

Article copyright:
© Copyright 1995
American Mathematical Society