## Hopf constructions and higher projective planes for iterated loop spaces

HTML articles powered by AMS MathViewer

- by Nicholas J. Kuhn, Michael Slack and Frank Williams
- Trans. Amer. Math. Soc.
**347**(1995), 1201-1238 - DOI: https://doi.org/10.1090/S0002-9947-1995-1282890-9
- PDF | Request permission

## Abstract:

We define a category, $\mathcal {H}_p^n$ (for each $n$ and $p$), of spaces with strong homotopy commutativity properties. These spaces have just enough structure to define the $\bmod p$ Dyer-Lashof operations for $n$-fold loop spaces. The category $\mathcal {H}_p^n$ is very convenient for applications since its objects and morphisms are defined in a homotopy invariant way. We then define a functor, $P_p^n$, from $\mathcal {H}_p^n$ to the homotopy category of spaces and show $P_p^n$ to be left adjoint to the $n$-fold loop space functor. We then show how one can exploit this adjointness in cohomological calculations to yield new results about iterated loop spaces.## References

- J. F. Adams,

*On the nonexistence of elements of Hopf invariant one*, Ann. of Math. (2)

**72**(1960), 20-104. S. Araki and T. Kudo,

*Topology of*${H_n}$-

*spaces and*${H_n}$-

*squaring operations*, Mem. Fac. Sci. Kyushu Univ. Ser. A

**10**(1956), 85-120. M. Arkowitz and P. Silberbush,

*Some properties of Hopf-type constructions*, preprint. J. M. Boardman and R. Vogt,

*Homotopy everything*$H$-

*spaces*, Bull. Amer. Math. Soc.

**74**(1968), 1117-1122. W. Browder,

*Homology operations and loop spaces*, Illinois J. Math.

**4**(1960), 347-357. W. Browder and E. Thomas,

*On the projective plane of an*$H$-

*space*, Illinois J. Math.

**7**(1963), 492-502. F. R. Cohen, T. J. Lada, and J. P. May,

*The homology of iterated loop spaces*, Lecture Notes in Math., vol. 533, Springer, Berlin and New York, 1976. F. R. Cohen, J. P. May, and L. R. Taylor,

*Splitting of certain spaces*$CX$, Math. Proc. Cambridge Philos. Soc.

**84**(1978), 465-496. E. Dyer and R. Lashof,

*Homology of iterated loop spaces*, Amer. J. Math.

**84**(1962), 35-88. Y. Hemmi,

*The projective plane of an*$H$-

*pairing*, J. Pure Appl. Algebra

**75**(1991), 277-296. J. R. Hubbuck,

*On homotopy commutative*$H$-

*spaces*, Topology

**8**(1969), 119-126. R. Kane,

*Implications in Morava*$K$-

*theory*, Mem. Amer. Math. Soc.

**340**(1986). N. Kuhn,

*The geometry of the James-Hopf maps*, Pacific J. Math.

**102**(1982), 397-412. —,

*Extended powers of spectra and a generalized Kahn-Priddy theorem*, Topology

**23**(1985), 473-480. J. P. Lin,

*Two torsion and the loop space conjecture*, Ann. of Math. (2)

**115**(1982), 35-91. M. Mahowald,

*The metastable homotopy of*${S^n}$, Mem. Amer. Math. Soc.

**72**(1967). J. P. May,

*The geometry of iterated loop spaces*, Lecture Notes in Math., vol. 271, Springer, Berlin and New York, 1972. R. J. Milgram,

*Iterated loop spaces*, Ann. of Math. (2)

**84**(1966), 386-403. —,

*Unstable homotopy from the stable point of view*, Lecture Notes in Math., vol. 368, Springer, Berlin and New York, 1974. H. R. Miller,

*A spectral sequence for the homology of an infinite delooping*, Pacific J. Math.

**79**(1978), 139-155. G. Nishida,

*Cohomology operations in iterated loop spaces*, Proc. Japan Acad.

**44**(1968), 104-109. M. Slack,

*Maps between iterated loop spaces*, J. Pure Appl. Algebra

**73**(1991), 181-201. —,

*Infinite loop spaces with trivial Dyer-Lashof operations*, Math. Proc. Cambridge Philos. Soc. (1993). J. Stasheff, $H$-

*spaces from the homotopy point of view*, Lectures Notes in Math., vol. 161, Springer, Berlin and New York, 1970. N. Steenrod,

*A convenient category of topological spaces*, Michigan Math. J.

**14**(1967), 133-152. E. Thomas,

*On functional cup operations and the transgression operator*, Arch. Math. (Basel)

**12**(1961), 435-444. —,

*Steenrod squares and*$H$-

*spaces*. I, II, Ann. of Math. (2)

**77**(1963), 306-317;

**81**(1965), 473-495.

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 1201-1238 - MSC: Primary 55P35; Secondary 55P45, 55P47, 55S12
- DOI: https://doi.org/10.1090/S0002-9947-1995-1282890-9
- MathSciNet review: 1282890