On a quadratic-trigonometric functional equation and some applications
HTML articles powered by AMS MathViewer
- by J. K. Chung, B. R. Ebanks, C. T. Ng and P. K. Sahoo
- Trans. Amer. Math. Soc. 347 (1995), 1131-1161
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290715-0
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 349 (1997), 4691-4691.
Abstract:
Our main goal is to determine the general solution of the functional equation \[ \begin {array}{*{20}{c}} {{f_1}(xy) + {f_2}(x{y^{ - 1}}) = {f_3}(x) + {f_4}(y) + {f_5}(x){f_6}(y),} \\ {{f_i}(txy) = {f_i}(tyx)\qquad (i = 1,2)} \\ \end {array} \] where ${f_i}$ are complex-valued functions defined on a group. This equation contains, among others, an equation of H. Swiatak whose general solution was not known until now and an equation studied by K.S. Lau in connection with a characterization of Rao’s quadratic entropies. Special cases of this equation also include the Pexider, quadratic, d’Alembert and Wilson equations.References
- J. Aczél, J. K. Chung, and C. T. Ng, Symmetric second differences in product form on groups, Topics in mathematical analysis, Ser. Pure Math., vol. 11, World Sci. Publ., Teaneck, NJ, 1989, pp. 1–22. MR 1116572, DOI 10.1142/9789814434201_{0}001 J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge, 1988.
- J. K. Chung, B. R. Ebanks, C. T. Ng, and P. K. Sahoo, On a functional equation connected with Rao’s quadratic entropy, Proc. Amer. Math. Soc. 120 (1994), no. 3, 843–848. MR 1180464, DOI 10.1090/S0002-9939-1994-1180464-6
- J. K. Chung, Pl. Kannappan, and C. T. Ng, A generalization of the cosine-sine functional equation on groups, Linear Algebra Appl. 66 (1985), 259–277. MR 781306, DOI 10.1016/0024-3795(85)90137-5
- B. R. Ebanks, Pl. Kannappan, and P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull. 35 (1992), no. 3, 321–327. MR 1184009, DOI 10.4153/CMB-1992-044-6
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871, DOI 10.1007/978-1-4612-9872-4
- Pl. Kannappan, The functional equation $f(xy)+f(xy^{-1})=2f(x)f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69–74. MR 219936, DOI 10.1090/S0002-9939-1968-0219936-1
- E. L. Koh, The Cauchy functional equations in distributions, Proc. Amer. Math. Soc. 106 (1989), no. 3, 641–646. MR 942634, DOI 10.1090/S0002-9939-1989-0942634-7
- Ka-Sing Lau, Characterization of Rao’s quadratic entropies, Sankhyā Ser. A 47 (1985), no. 3, 295–309. MR 863724
- R. C. Penney and A. L. Rukhin, d’Alembert’s functional equation on groups, Proc. Amer. Math. Soc. 77 (1979), no. 1, 73–80. MR 539634, DOI 10.1090/S0002-9939-1979-0539634-1
- A. L. Rukhin, The solution of the functional equation of d’Alembert’s type for commutative groups, Internat. J. Math. Math. Sci. 5 (1982), no. 2, 315–335. MR 655518, DOI 10.1155/S0161171282000301
- Halina Światak, On two functional equations connected with the equation $\phi (x+y)+\phi (x-y)=2\phi (x)+2\phi (y)$, Aequationes Math. 5 (1970), 3–9. MR 276638, DOI 10.1007/BF01819265
- László Székelyhidi, Convolution type functional equations on topological abelian groups, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. MR 1113488, DOI 10.1142/1406
- W. Harold Wilson, On certain related functional equations, Bull. Amer. Math. Soc. 26 (1920), no. 7, 300–312. MR 1560309, DOI 10.1090/S0002-9904-1920-03310-0
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1131-1161
- MSC: Primary 39B52; Secondary 39B22, 39B32
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290715-0
- MathSciNet review: 1290715