Norm estimates for radially symmetric solutions of semilinear elliptic equations
HTML articles powered by AMS MathViewer
- by Ryuji Kajikiya
- Trans. Amer. Math. Soc. 347 (1995), 1163-1199
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290720-4
- PDF | Request permission
Abstract:
The semilinear elliptic equation $\Delta u + f(u) = 0$ in ${R^n}$ with the condition ${\lim _{|x| \to \infty }}u(x) = 0$ is studied, where $n \geqslant 2$ and $f(u)$ has a superlinear and subcritical growth at $u = \pm \infty$. For example, the functions $f(u) = |u{|^{p - 1}}u - u\;(1 < p < \infty \;{\text {if}}\;n = 2,\;1 < p < (n + 2)/(n - 2)\;{\text {if}}\;n \geqslant 3)$ and $f(u) = u\log |u|$ are treated. The ${L^2}$ and ${H^1}$ norm estimates ${C_1}{(k + 1)^{n/2}} \leqslant ||u|{|_{{L^2}}} \leqslant ||u|{|_{{H^1}}} \leqslant {C_2}{(k + 1)^{n/2}}$ are established for any radially symmetric solution $u$ which has exactly $k \geqslant 0$ zeros in the interval $0 \leqslant |x| < \infty$. Here ${C_1},\;{C_2} > 0$ are independent of $u$ and $k$.References
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- M. Grillakis, Existence of nodal solutions of semilinear equations in $\textbf {R}^N$, J. Differential Equations 85 (1990), no. 2, 367–400. MR 1054554, DOI 10.1016/0022-0396(90)90121-5
- Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
- C. Jones and T. Küpper, On the infinitely many solutions of a semilinear elliptic equation, SIAM J. Math. Anal. 17 (1986), no. 4, 803–835. MR 846391, DOI 10.1137/0517059
- Ryuji Kajikiya, Sobolev norms of radially symmetric oscillatory solutions for superlinear elliptic equations, Hiroshima Math. J. 20 (1990), no. 2, 259–276. MR 1063363
- Ryuji Kajikiya, Radially symmetric solutions of semilinear elliptic equations, existence and Sobolev estimates, Hiroshima Math. J. 21 (1991), no. 1, 111–161. MR 1091434
- Ryuji Kajikiya, Nodal solutions of superlinear elliptic equations in symmetric domains, Adv. Math. Sci. Appl. 3 (1993/94), no. Special Issue, 219–266. MR 1287930
- Kevin McLeod, W. C. Troy, and F. B. Weissler, Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, J. Differential Equations 83 (1990), no. 2, 368–378. MR 1033193, DOI 10.1016/0022-0396(90)90063-U S. I. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl. 5 (1965), 1408-1411.
- Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365, DOI 10.1007/BF01626517
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1163-1199
- MSC: Primary 35J60; Secondary 34B15, 35B05, 35B45
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290720-4
- MathSciNet review: 1290720