On the $L^ 2$ inequalities involving trigonometric polynomials and their derivatives
HTML articles powered by AMS MathViewer
- by Weiyu Chen
- Trans. Amer. Math. Soc. 347 (1995), 1753-1761
- DOI: https://doi.org/10.1090/S0002-9947-1995-1254834-7
- PDF | Request permission
Abstract:
In this note we study the upper bound of the integral \[ \int _0^\pi {{{({t^{(k)}}(x))}^2}w(x)} dx\] where $t(x)$ is a trigonometric polynomial with real coefficients such that $\left \| t \right \|\infty \leqslant 1$ and $w(x)$ is a nonnegative function defined on $[0,\pi ]$. When $w(x) = \sin ^jx$, where $j$ is a positive integer, we obtain the exact upper bound for the above integral.References
- G. K. Kristiansen, Some inequalities for algebraic and trigonometric polynomials, J. London Math. Soc. (2) 20 (1979), no. 2, 300–314. MR 551458, DOI 10.1112/jlms/s2-20.2.300
- G. G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. MR 0213785
- Li-Chien Shen, Comments on an $L^2$ inequality of A. K. Varma involving the first derivative of polynomials, Proc. Amer. Math. Soc. 111 (1991), no. 4, 955–959. MR 1039265, DOI 10.1090/S0002-9939-1991-1039265-9 G. Szegö, Orthogonal polynomials, 4th ed., Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.
- L. V. Taĭkov, A generalization of an inequality of S. N. Bernšteĭn, Trudy Mat. Inst. Steklov. 78 (1965), 43–47 (Russian). MR 0190610 A. K. Varma, Markoff type inequalities for curved majorants in ${L_2}$ norm, Colloq. Math. Soc. János Bolyai: Approximation Theory, Keekemet (Hungary), 1990.
- A. K. Varma, On some extremal properties of algebraic polynomials, J. Approx. Theory 69 (1992), no. 1, 48–54. MR 1154222, DOI 10.1016/0021-9045(92)90048-S
- A. K. Varma, T. M. Mills, and Simon J. Smith, Markoff type inequalities for curved majorants, J. Austral. Math. Soc. Ser. A 58 (1995), no. 1, 1–14. MR 1313881, DOI 10.1017/S1446788700038040
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1753-1761
- MSC: Primary 42A05; Secondary 41A17
- DOI: https://doi.org/10.1090/S0002-9947-1995-1254834-7
- MathSciNet review: 1254834