EXAMPLES OF $B(D, \lambda)$-REFINABLE AND WEAK θ-REFINABLE SPACES

STEPHEN H. FAST AND J. C. SMITH

Abstract. In 1980, J. C. Smith asked for examples which would demonstrate the relationships between the properties $B(D, \lambda)$-refinability, $B(D, \omega_0)$-refinability, and weak θ-refinability. This paper gives such examples in the class of T_4 spaces.

1. INTRODUCTION AND DEFINITIONS

In [5], J. C. Smith asks for an example showing the relationship between $B(D, \lambda)$-refinability and $B(D, \omega_0)$-refinability where λ represents a countable ordinal. Smith also conjectured that weak θ-refinability is strictly weaker than $B(D, \omega_0)$-refinability. This paper gives examples demonstrating the relationship between these properties.

In §2 we construct a T_4 space $K^*_\omega_1$ such that for each $\alpha < \omega_1$, $K^*_\omega_1$ has a closed subspace that is $B(D, \alpha)$-refinable but not $B(D, \beta)$-refinable for any $\beta < \alpha$. We then show that $K^*_\omega_0 + 1$ is weak θ-refinable, implying that weak θ-refinability is strictly weaker than $B(D, \omega_0)$-refinability.

Definition 1. A space is said to be mesocompact if every open cover of the space has an open refinement \mathcal{V} such that any compact subset of the space meets only finitely many members of \mathcal{V}.

Definition 2. A space is said to be metacompact if every open cover of the space has a point-finite open refinement.

Definition 3. A space X is said to be $B(D, \lambda)$-refinable provided that for every open cover $\mathcal{U} = \{U_\delta : \delta \in \Lambda\}$ of X there exists a family $\{\mathcal{B}_\alpha : \alpha \in \lambda\}$ of partial refinements of \mathcal{U} such that the following conditions hold:

1. $\bigcup\{\mathcal{B}_\alpha : \alpha \in \lambda\}$ is a refinement of \mathcal{U};
2. $\bigcup_{\gamma < \alpha} (\bigcup \mathcal{B}_\gamma)$ is closed in X for every $\alpha \in \lambda$;
3. \mathcal{B}_α is a relatively discrete closed collection in $X - \bigcup_{i < \alpha} \mathcal{B}_i$.

In this case $\mathcal{B} = \bigcup\{\mathcal{B}_\alpha | \alpha \in \lambda\}$ is said to be a $B(D, \lambda)$ refinement of \mathcal{U}. Note that if we define for each $\alpha \in \lambda$ the family $\mathcal{H}_\alpha = \{H_\delta : \delta \in \Lambda\}$ where

Received by the editors August 10, 1990 and, in revised form, February 11, 1994; originally communicated to the Proceedings of the AMS by D. K. Burke.

1991 Mathematics Subject Classification. Primary 54D18, 54D20, 54G20; Secondary 54D15.

Key words and phrases. $B(D, \lambda)$-refinable, weak θ-refinable, metacompact, mesocompact, θ-refinable, compact, Bing space, collectionwise T_2, normal, standard subbasic funnel.
$H_\delta = \bigcup \{ B \in B_\alpha | B \subseteq U_\delta \text{ and } B \not\subset U_\gamma \text{ for } \gamma < \delta \}, \text{ then } \mathcal{H} = \bigcup \{ \mathcal{H}_\alpha | \alpha \in \lambda \} \text{ is also a } B(D, \lambda) \text{ refinement of } \mathcal{U}. \text{ We say that } \mathcal{H} \text{ is the amalgamation of } B. \text{ Thus we may henceforth assume that all } B(D, \lambda) \text{ refinements are amalgamated. Note that each } \mathcal{H}_\alpha \text{ is a one-to-one partial refinement of } \mathcal{U}.

Definition 4. Let $\mathcal{H} = \{ H_\alpha : \alpha \in A \}$ be a collection of subsets of a space X. Then for $x \in X$ we define \(\text{ord}(x, \mathcal{H}) = |\alpha \in A : x \in H_\alpha| \).

Definition 5. A space X is said to be θ-refinable provided that for every open cover \mathcal{U} of X there exists a sequence $\{ \mathcal{S}_n : n \in \omega_0 \}$ of open refinements of \mathcal{U} such that for each $x \in X$ there exists some $n_x \in \omega_0$ such that $0 < \text{ord}(x, \mathcal{S}_{n_x}) < \infty$.

Definition 6. A space X is said to be weak $\overline{\theta}$-refinable provided that for every open cover \mathcal{U} of X there exists a sequence $\{ \mathcal{S}_n : n \in \omega_0 \}$ of open partial refinements of \mathcal{U} such that the following conditions hold:

1. $\bigcup \{ \mathcal{S}_n : n \in \omega_0 \}$ is an open refinement of \mathcal{U};
2. for each $x \in X$ there exists some $n_x \in \omega_0$ such that $0 < \text{ord}(x, \mathcal{S}_{n_x}) < \infty$;
3. for each $x \in X$ there exists some $k_x \in \omega_0$ such that $x \notin \bigcup \{ \{ \mathcal{S}_n : n \geq k_x \} \}$.

Note that mesocompact \rightarrow metacompact \rightarrow θ-refinable $\rightarrow B(D, \omega_0)$-refinable \rightarrow weak $\overline{\theta}$-refinable.

It is known that the first three implications are not reversible [4]. This paper shows that the last implication is not reversible in T_4 spaces.

2. Construction of the space K^*_ω

In [1], R. H. Bing gave an example of a normal topological space that is not collectionwise T_2. We call such an example a Bing space and give the construction of such a space below.

Let $Q_1 = P(\omega_1) = \text{ the set of all subsets of } \omega_1$. Let $\tilde{G}_1 = \{ f \in \prod_{\alpha \in \omega_1} \{ 0, 1 \} | f \in \Pi_{\{ \alpha \}^{-1}(1)} \}$ for some positive, finite number of $\alpha \in \omega_1$, where $\{ 0, 1 \}$ is the two-point discrete space. Note that $f \in \Pi_{\{ \alpha \}^{-1}(1)}$ if and only if $f(\{ \alpha \}) = 1$. For $\alpha \in \omega_1$, define f_α by

$$f_\alpha(q) = \begin{cases} 1 & \text{if } \alpha \in q \\ 0 & \text{if } \alpha \notin q \end{cases}.$$

Define $K_1 = \{ f_\alpha | \alpha \in \omega_1 \}$ so that $K_1 \subseteq \tilde{G}_1$. Let $G_1 = K_1 \cup \{ f \in \tilde{G}_1 - K_1 | f(q) = 1 \}$ for only finitely many $q \in Q_1 \}$. Topologize G_1 by adding to the induced Tychonoff product topology all singleton sets $\{ g \}$ where $g \in G_1 - K_1$. Let $K_2 = G_1$ with the topology described above. For each $\alpha < \omega_1$, let $U_\alpha^2 = \pi_{\{ \alpha \}^{-1}(1)}$. We call such a set U_α^2 a standard subbasic open funnel. Since $\mathcal{U}^2 = \{ U_\alpha^2 | \alpha < \omega_1 \}$ covers K_2^*, we call \mathcal{U}^2 the standard open cover of K_2^*.

Let $Q_2 = P(G_1 - K_1)$. Using Q_2, construct K_2 and the Bing space G_2 as in the construction of the Bing space G_1 using Q_1. Let $K_3^* = G_1 \cup G_2$, identifying $G_1 - K_1$ with K_2 by the bijection $\varphi : (G_1 - K_1) \rightarrow K_2$ defined by the following:
\(\varphi(f) = g_f \in K_2 \), where
\[
 g_f(q) = \begin{cases}
 1 & \text{if } f \in q \\
 0 & \text{if } f \notin q
\end{cases}
\text{ for all } f \in G_1 - K_1.
\]

Topologize \(K_3^* \) as follows. If \(A \) is an open subset of \(K_2^* \), then \(A \cup \{ f | f \in K_2 \cap A \} \), where each \(A_f \) is a set containing \(f \) that is open in \(G_2 \), is a basic open set in \(K_3^* \). In addition, any open set \(B \subseteq G_2 \) is open in \(K_3^* \). For each \(\alpha < \omega_1 \), let \(U_3^\alpha = U_3^2 \cup \{ f | f \in \pi_{(k)}^{-1}(1) \} \) for some \(k \in K_2 \cup U_3^2 \). Note that \(U_3^3 = \{ U_3^\alpha | \alpha < \omega_1 \} \) is the standard open cover of \(K_3^* \). We now construct by transfinite recursion the space \(K_{\omega_1}^* \).

Let \(\gamma < \omega_1 \).

Case (1). If \(\gamma = \beta + 1 \), where \(\beta \) is a successor ordinal, construct \(K_{\gamma}^* \) from \(K_3^* \) as \(K_3^* \) was constructed from \(K_2^* \) above. For each \(\alpha < \omega_1 \), let \(U_3^\alpha = U_3^\beta \cup \{ f | f \in \pi_{(k)}^{-1}(1) \} \) for some \(k \in K_\beta \cap U_3^\beta \). Note that \(\mathcal{U}_\gamma = \{ U_3^\alpha | \alpha < \omega_1 \} \) is the standard open cover of \(K_\gamma^* \).

Case (2). If \(\gamma \) is a limit ordinal, let \(K_{\gamma}^* = \bigcup \{ K_\delta^* | \delta < \gamma \} \) with the natural identification of levels and topology.

Case (3). If \(\gamma \) is the successor of a limit ordinal, say \(\gamma = \beta + 1 \), let \(\psi : \omega \to \beta \) be an increasing cofinal map where each \(\psi(n) \) is a successor ordinal. Let \(K_{\gamma} = \{ \varphi : \omega \to K_\beta^* | \varphi(n) \in K_{\psi(n)} \} \) for every \(n \in \omega \) and a tail of the image of \(\varphi \) is contained in some member of the standard open cover \(\mathcal{U}_\beta \) of \(K_\beta^* \). Define \(K_{\gamma}^* = K_\beta^* \cup K_{\gamma} \) topologized as follows: If set \(B \) is open in \(K_\beta^* \), then \(B \cup \{ \varphi \in K_{\gamma} | \text{ a tail of the image of } \varphi \text{ is in } B \} \) is an open set in \(K_{\gamma}^* \). In addition, all singleton sets \(\{ \varphi \} \) for \(\varphi \in K_{\gamma} \) are open.

Define the space \(K_{\omega_1}^* = \bigcup \{ K_\gamma^* | \gamma < \omega_1 \} \) with the natural identification of the levels and topology. Note that \(\mathcal{U}^* = \{ U_3^\delta | \delta < \omega_1 \} \) is an open cover of \(K_{\omega_1}^* \), which we call the standard open cover, that each \(K_\gamma^* \) is a closed subspace of \(K_{\omega_1}^* \), that each \(K_{\gamma} \) is a relatively closed, discrete subspace of \(K_{\omega_1}^* \cup \{ K_\beta^* | \beta < \gamma \} \), and that \(K_{\omega_1}^* \) is T4. To see that \(K_{\omega_1}^* \) is normal, suppose that \(A \) and \(B \) are disjoint nonempty subsets of \(K_{\omega_1}^* \). Then \(A \cap (K_{\gamma} \cup K_{\gamma+1}) \) and \(B \cap (K_{\gamma} \cap K_{\gamma+1}) \) are disjoint nonempty subsets of \(K_{\gamma} \cup K_{\gamma+1} \), which is a normal Bing space, and can be separated by disjoint open sets, say \(A^* \) and \(B^* \). Since \(A^* \cap K_{\gamma+1} \) and \(B^* \cap K_{\gamma+1} \) are disjoint closed subsets of \(K_{\gamma+1} \cup K_{\gamma+2} \), a straightforward induction can be used to construct disjoint open subsets of \(K_{\omega_1}^* \) separating \(A \) and \(B \).

We now state our main result.

Theorem 1. For every countable ordinal \(\alpha \), there exists a T4, \(B(D, \alpha) \)-refinable space which is not \(B(D, \beta) \)-refinable for any \(\beta < \alpha \).

Proof. Since each \(K_\alpha \) is a relatively closed discrete subspace of \(K_{\omega_1}^* - \{ K_\beta^* | \beta < \gamma \} \) is a successor ordinal), it is clear that \(K_\alpha^* \) is \(B(D, \alpha) \)-refinable.

To prove that \(K_\alpha^* \) is not \(B(D, \beta) \)-refinable for any \(\beta < \alpha \), our inductive proof proceeds in the following way. Let \(\{ \mathcal{B}_\mu | \mu < \alpha \} \) be a collection of partial refinements of \(\mathcal{U} \) such that the following conditions hold:

1. \(\bigcup_{\gamma<\mu}(\bigcup \mathcal{B}_\gamma) \) is closed in \(K_{\omega_1}^* \) for every \(\mu < \alpha \);
\mathcal{B}_μ is a relatively discrete, closed collection in $K^{\omega_1}_* - (\bigcup_{\gamma < \mu} (\bigcup \mathcal{B}_\gamma))$ for each $\mu < \alpha$.

First, for every limit ordinal $\alpha < \omega_1$ and $x \in (U_\delta \cap K_{\alpha+1}) - \bigcup_{\mu < \alpha} (\bigcup \mathcal{B}_\mu)$, let $S(x, \delta)$ be an open funnel about x such that

$$S(x, \delta) \subseteq U_\delta - \left(\left(\bigcup_{\mu < \alpha} K_{\mu} \right) \cup \left(\bigcup_{\mu < \alpha} (\bigcup \mathcal{B}_\mu) \right) \right).$$

For every $\alpha < \omega_1$, we will show that there exists a $\delta_\alpha < \omega_1$ such that for every $\delta \geq \delta_\alpha$ there exists an $x(\alpha, \delta) \in K_{\alpha+1} \cap U_\delta$ and an open set $V(\alpha, \delta)$ about $x(\alpha, \delta)$ such that the following conditions hold:

1. $y \geq \alpha \Rightarrow \delta_y < \delta_\alpha$;
2. $y < \alpha$ and $\delta \geq \delta_\alpha \Rightarrow V(\alpha, \delta) \subseteq V(y, \delta)$;
3. $\delta \geq \delta_\alpha \Rightarrow x(\alpha, \delta) \notin (\bigcup_{\sigma < \delta} U_\sigma) \cup (\bigcup_{\mu < \alpha} (\bigcup \mathcal{B}_\mu))$;
4. $\delta \geq \delta_\alpha \Rightarrow V(\alpha, \delta) \cap (\bigcup_{\mu < \alpha} (\bigcup \mathcal{B}_\mu)) = \emptyset$;
5. For every limit ordinal $\tau > \alpha$, $\delta \geq \delta_\alpha$ and $x \in K_{\tau+1} \cap V(\alpha, \delta) \Rightarrow S(x, \delta) \subseteq V(\alpha, \delta)$.

For $\alpha = 0$, let $\delta_0 = 0$ and $x(\alpha, \delta) = f_\delta$ for every $\delta < \omega_1$. Let $V(\alpha, \delta) = U_\delta$ for each $\delta < \omega_1$. Then conditions (1)-(5) are satisfied for $\alpha = 0$.

Suppose that $\alpha > 0$ and that conditions (1)-(5) above hold for every $\beta < \alpha$. We show that these conditions hold for α.

I. Case 1. α is a limit ordinal.

Since $\alpha < \omega_1$, choose $\psi < \omega_1$ such that $\psi > \delta_\beta$ for every $\beta < \alpha$. Hence for every $\delta > \psi$, there exists for each $\beta < \alpha$, a $x(\beta, \delta) \in K_{\beta+1} \cap U_\delta$ and an open set $V(\beta, \delta)$ about $x(\beta, \delta)$ such that the inductive conditions (1)-(5) hold. Let $\delta_\alpha = \psi$.

For each $\delta > \psi$, let $x(\alpha, \delta) = \phi_\delta \in K_{\alpha+1}$, where $\phi_\delta(\beta) = x(\beta, \delta)$ for every β in the image of ψ_α (see above the construction Case 3 of $K_{\alpha+1}$, where γ is a limit ordinal). By inductive conditions (2) and (3), each $x(\alpha, \delta)$ is well defined and $x(\alpha, \delta) \notin (\bigcup_{\sigma < \delta} U_\sigma) \cup (\bigcup_{\mu < \alpha} (\bigcup \mathcal{B}_\mu))$. By the choice of ψ it follows that $\gamma < \alpha \Rightarrow \delta_\gamma < \psi$. Since if $\delta \geq \psi$, we have $x(\alpha, \delta) \notin \bigcup_{\mu < \alpha} (\bigcup \mathcal{B}_\mu)$, by the definition of the sets $V(\gamma, \delta)$, we can choose an open set $V(\alpha, \delta)$ about $x(\alpha, \delta)$ such that (2), (4), and (5) hold.

Before we consider the case where α is not a limit ordinal, we need the lemma below.

Lemma 1. Let \mathcal{U} be the standard subbasic open cover of $K^{\omega_1}_*$. Fix $\beta < \omega_1$ where β is a successor ordinal. Suppose that X is a closed subset of $K^{\omega_1}_*$ and $\mathcal{B} = \{B_x | x_0 \in K_1\}$ is a relatively discrete closed collection in $K^{\omega_1}_* \setminus X$ which partially refines \mathcal{U} such that the following conditions hold:

(A) There exists an $\alpha_1 \in \omega_1$ such that for every $\gamma > \alpha_1$ there exists some
1. $g(\beta, \gamma) \in U_\gamma \cap K_\beta \setminus (X \cup (\bigcup \{U_\tau | \tau < \gamma\}))$

and
2. for each $g(\beta, \gamma)$ in (1) we can choose a funnel $V(\beta, \gamma) \subseteq U_\gamma$ about $g(\beta, \gamma)$ such that $V(\beta, \gamma) \cap X = \emptyset$ and $V(\beta, \gamma)$ hits at most one member of \mathcal{B}; i.e. $V(\beta, \gamma) \cap B \neq \emptyset$ iff $g(\beta, \gamma) \in B$ for each $B \in \mathcal{B}$. (*)

(B) Then there exists an $\alpha_2 \in \omega_1$ such that for every $\rho > \alpha_2$ we have

$$[V(\beta, \rho) \setminus ((\bigcup \mathcal{B}) \cup (\bigcup \{U_\tau | \tau < \rho\}))] \cap K_{\beta+1} \neq \emptyset.$$
Remark. Note that in (A), if (1) holds, then (2) follows.

Proof. Assume (A) and suppose (B) is false; that is, no such α_2 exists. Choose $\gamma_0 > \alpha_1$ and a funnel $V(\beta, \gamma_0)$ such that
$$\left[V(\beta, \gamma_0) \setminus \left(\bigcup_{(\tau, \gamma_0)} \cup \left(\{U_f, \tau < \gamma_0\} \right) \right) \right] \cap K_{\beta+1} = \emptyset.$$

By our supposition we can choose $\gamma_1 > \gamma_0$ such that $\gamma_1 > \tau$ if $V(\beta, \gamma_0) \cap B_f, \neq \emptyset$ and
$$\left[V(\beta, \gamma_1) \setminus \left(\bigcup_{(\tau, \gamma_0)} \cup \left(\{U_f, \tau < \gamma_1\} \right) \right) \right] \cap K_{\beta+1} = \emptyset.$$

Assume that for $\rho < \Gamma$, γ_ρ has been chosen such that the following conditions hold:
(i) $\gamma_\rho > \gamma_\delta$ if $\delta < \rho$;
(ii) $\gamma_\rho > \tau$ if $V(\beta, \gamma_\delta) \cap B_f, \neq \emptyset$ for any $\delta < \rho$;
(iii) $\left[V(\beta, \gamma_\rho) \setminus \left(\bigcup_{(\tau, \gamma_\delta)} \cup \left(\{U_f, \tau < \gamma_\rho\} \right) \right) \right] \cap K_{\beta+1} = \emptyset.$

By our supposition there exists
$$\gamma_T > \sup(\{\gamma_\rho | \rho < \Gamma\} \cup \{\tau \in \omega_1 | B_f \cap V(\beta, \gamma_\rho) = \emptyset \text{ for some } \rho < \Gamma\})$$
such that (i), (ii), and (iii) hold. Thus we can continue the induction on ω_1.

Since the singletons $\{g(\beta, \gamma_\delta) | \delta \in \omega_1\}$ cannot be separated by pairwise disjoint open sets in $G_\beta = K_\beta \cup K_{\beta+1}$, and since $V(\beta, \gamma_\delta) \cap G_\beta$ is open in G_β for every $\delta \in \omega_1$, there exists $\delta_1, \delta_2 \in \omega_1$ ($\delta_1 < \delta_2$), such that $V(\beta, \gamma_\delta) \cap V(\beta, \gamma_{\delta_1}) \cap K_{\beta+1} \neq \emptyset$. Now $G_\beta \cap V(\beta, \gamma_\delta) \cap V(\beta, \gamma_{\delta_1}) = \bigcap_{j=1}^{k} \pi_{j-1}(G_\beta)$ for some $q_1, q_2, \ldots, q_k \in Q_\beta$, and each t_j has the value 1 or 0. Since $g(\beta, \gamma_\delta) \in V(\beta, \gamma_\delta)$ and $g(\beta, \gamma_{\delta_1}) \in V(\beta, \gamma_{\delta_1})$, by (A) if any $q_j = \{h\}$, where $h \in \bigcup\{U_f, \tau < \gamma_\delta\} \cap K_\beta$, it follows that $t_j = 0$. Hence $V(\beta, \gamma_\delta) \cap V(\beta, \gamma_{\delta_1}) \cap V(\beta, \gamma_{\delta_2}) \cap \bigcup\{U_f, \tau < \gamma_\delta\} \cap K_{\beta+1} \neq \emptyset$. Choose $x \in V(\beta, \gamma_\delta) \cap V(\beta, \gamma_{\delta_1}) \cap V(\beta, \gamma_{\delta_2}) \cap \bigcup\{U_f, \tau < \gamma_\delta\} \cap K_{\beta+1}$. By (iii) above, we must have that $x \in \bigcup B_x$. Choose $B_x \subset B_x$ with $x \in B_x$. Then
$$x \in V(\beta, \gamma_\delta) \cap V(\beta, \gamma_{\delta_1}) \cap B_x.$$

By (A-2) above, $g(\beta, \gamma_\delta) \in B_x$. Thus it follows from (ii) and the assumption (A) that $g(\beta, \gamma_{\delta_1}) \notin B_x$. However, by (A-2) we have that $V(\beta, \gamma_{\delta_1}) \cap B_x = \emptyset$, contradicting (**) Therefore, the lemma is proved.

We now consider the case where α is a successor ordinal.

II. Case 2. $\alpha = \beta + 1$.

Since β satisfies the inductive hypothesis (1)–(5), condition (A) of Lemma 1 is satisfied. To see this, let $X = \bigcup_{\mu \in \alpha} (\bigcup U_\mu)$ and let $\mathcal{B} = \mathcal{B}_\alpha$. Then the α_1 of Lemma 1, condition (A) is fulfilled by δ_β, since for each $\delta \geq \delta_\beta$ the element $x(\beta, \delta) \in (U_f \cap K_\beta) \setminus \left(\bigcup_{\mu \in \alpha} (\bigcup U_\mu) \right)$ by inductive hypothesis (3).

Hence by Lemma 1, there exists $\delta_\alpha < \omega_1$ satisfying condition (3). Clearly, we can choose $\delta_\alpha > \delta_\beta$, so (1) is satisfied. Since \mathcal{B}_α is a relatively closed, discrete collection in $K_{\omega_1} - (\bigcup_{\mu < \alpha} (\bigcup U_\mu))$, we can choose an open set $V(\alpha, \delta)$ about each $x(\alpha, \delta)$ such that conditions (2), (4), and (5) are satisfied. The proof of Theorem 1 is now complete.

Theorem 2. G_n is metacompact for each $n \in N$.

Proof. Let \mathcal{U} be any open cover of G_n. For each $f \in K_n$, choose a member U_f of \mathcal{U} that contains f. For each $f \in K_n$, let V_f represent the standard
funnel about \(f \). Then \(\{ U_f \cap V_f \mid f \in K_1 \} \cup \{ \{ g \} \mid g \in G_n \setminus K_n \} \) is a point-finite refinement of \(\mathcal{V} \).

Theorem 3. \(K_{w_0}^* \) is metacompact.

Proof. Let \(\mathcal{V} = \{ V_\alpha \mid \alpha \in A \} \) be an open cover of \(K_{w_0}^* \). Then, since \(G_1 \) is metacompact, \(\mathcal{V} \) has a 1-1, open in \(K_{w_0}^* \), partial refinement \(\mathcal{T} = \{ T_\alpha \mid \alpha \in A \} \) which is point-finite on \(G_1 \) and covers \(G_1 \). For each \(x \in G_n \cap T_\alpha \), let \(C(x, n, \alpha) \) be the intersection of the standard funnel about \(x \) with \(T_\alpha \). Define the open set \(S^n_\alpha \) inductively as follows:

(1) \(S^1_\alpha \cap G_1 = T_\alpha \cap G_1 \);
(2) for \(n > 1 \), \(S^n_\alpha \cap G_n = \left(S^n_\alpha \cap K_n \right) \cup \{ y \in G_n \mid y \in C(x, n, \alpha) \text{ for some } x \in S^n_\alpha \cap K_n \} \).

Note that \(S^n_\alpha = \{ S^n_\alpha \mid \alpha \in A \} \) is an open in \(K_{w_0}^* \), point-finite, partial refinement of \(\mathcal{V} \) which covers \(G_1 \). To see this, suppose \(x \in K_3 \). Then \(x \in \Pi_q^{-1}(1) \) for only finitely many \(q \) in \(P(K_2) \). Hence \(x \) is a member of only finitely many standard funnels about elements in \(K_2 \). Since \(K_2 \subseteq G_1 \), \(S^n_\alpha \) is point-finite on \(K_2 \). Thus, by (2) it must be the case that \(S^n_\alpha \) is point-finite on \(K_3 \). Continuing in this way it follows that \(S^n_\alpha \) is point-finite on \(K_n \) for every \(n \).

Next, since \(K_1 \cup K_2 \cup \cdots \cup K_n \) is a closed subset of \(K_{w_0}^* \), and since \(G_n \) is metacompact for each \(n \), we can construct a 1-1 point-finite open partial refinement \(\mathcal{T}^n \) of \(\mathcal{V} \) that covers \(K_n \) and misses \(K_n \cap K_{n-1} \). It then folows that \(\mathcal{T} = \bigcup(B^n : n \in N) \) is a point-finite open refinement of \(\mathcal{V} \). Hence, \(K_{w_0}^* \) is metacompact.

To show that \(K_{w_0}^* \) is mesocompact, it suffices to show that every compact subset of \(K_{w_0}^* \) is finite. In [2], J. R. Boone shows that every compact subset of \(G_1 \) is finite. We now extend this result to obtain the following lemma.

Lemma 2. For each \(n \in N \), if \(C \) is a compact subset of \(K_{w_0}^* \), then \(C \cap (\bigcup(G_i \mid i \leq n)) \) is finite.

Proof. The proof is by induction on \(N \). For \(n = 1 \) observe that \(G_1 \cap C \) is closed in \(K_{w_0}^* \) and therefore compact. Suppose that we can choose distinct elements \(f_1, f_2, f_3, \ldots, f_n, \ldots \) in \(C \cap G_1 \). Since \(K_1 \) is discrete, we may assume that each \(f_i \) belongs to \(K_2 \cap C \). Since \(\| \{q \in Q_1 \mid f_i(q) \neq 0 \text{ for some } i \in N \} \| \leq \aleph_0 \), for each \(f \in K_1 \) we can choose a basic open funnel \(V_f \) about \(f \) that misses \(\{ f_1, f_2, f_3, \ldots \} \), since \(\| \{q \in Q_1 \mid f(q) \neq 0 \} \| > \aleph_0 \). Thus \(\{ V_f \mid f \in K_1 \cap C \} \cup \{ \{ f \} \mid f \in C \cap K_2 \} \) is an open cover (open in \(G_1 \)) of \(C \cap G_1 \) with no finite subcover, contradicting the compactness of \(C \cap G_1 \). Hence \(C \cap G_1 \) must be finite.

Assume that for all \(k < n \), \(C \cap (\bigcup(G_i \mid i \leq k)) \) is finite.

By inductive hypothesis, \(C \cap (\bigcup(G_i \mid i \leq n-1)) \) is compact and therefore finite. Suppose we can choose distinct elements \(f_1, f_2, f_3, \ldots \) in \(C \cap K_{n+1} \). Since \(\| \{q \in Q_n \mid f_i(q) \neq 0 \text{ for some } i \in N \} \| \leq \aleph_0 \), for each \(f \in C \cap (\bigcup(G_i \mid i \leq n-1)) \) we can choose a funnel \(V_f \) about \(f \) which misses \(\{ f_1, f_2, f_3, \ldots \} \subseteq C \). Thus \(\{ V_f \mid f \in C \cap (\bigcup(G_i \mid i \leq n-1)) \} \cup \{ \{ f \} \mid f \in C \cap K_{n+1} \} \) is an open cover of \(C \cap (\bigcup(G_i \mid i \leq n)) \) with no finite subcover, in contradiction to the compactness of \(C \cap (\bigcup(G_i \mid i \leq n)) \), so the lemma follows.

Lemma 3. If \(C \) is a compact subset of \(K_{w_0}^* \), then \(C \) is finite.

Proof. Suppose \(C \) is an infinite compact subset of \(K_{w_0}^* \). Then by Lemma 2
there must exist a sequence \(f : N \to C \) such that \(f(n) \notin \bigcup \{ K_j \mid f(i) \in K_j \text{ for some } i < n \} \). Since \(\{ f(n) \mid n \in N \} \) is a closed subset of \(C \), it is compact. It is easy to show that this sequence is also discrete and thus cannot be compact. Hence the lemma is proved.

From Theorem 3 and Lemma 3 above we now have the following.

Theorem 4. \(K_{\omega_0}^* \) is mesocompact.

Theorem 5. (i) \(K_{\omega_0}^* \) is \(B(D, \omega_0) \)-refinable but not \(B(D, n) \)-refinable for any \(n \).

(ii) \(K_{\omega_0+1}^* \) is \(B(D, \omega_0+1) \)-refinable but not \(B(D, \omega_0) \)-refinable.

(iii) \(K_{\omega_0+1}^* \) is weak \(\theta \)-refinable and \(T_4 \).

Proof. The proof of (i) and (ii) follow directly from Theorem 1. Let \(\mathcal{U} \) be an open cover of \(K_{\omega_0+1}^* \). Since \(K_{\omega_0}^* \) is metacompact, \(\mathcal{U} \) has a partial refinement \(\mathcal{S}_1 \), which is point-finite on \(K_{\omega_0}^* \). Next, let \(\mathcal{S}_2 \) be the collection of singleton subsets of \(K_{\omega_0+1} \setminus K_{\omega_0}^* \). Then \(\mathcal{S}_1 \cup \mathcal{S}_2 \) is a weak \(\bar{\theta} \)-refinement of \(\mathcal{U} \).

Question. If we modify the construction of each \(G_n \) so that

\[
G_n = \left\{ f \in \prod_{q \in Q_n} \{0, 1\} \mid f \in \Pi_{\{\alpha\}}^{-1}(1) \text{ for some } \alpha \in \omega_1 \right\},
\]

would the space \(K_{\omega_0+1}^* \) remain weak \(\bar{\theta} \)-refinable? The authors conjecture that it would not. If not, then \(K_{\omega_0+1}^* \) is a \(T_4 \), \(B(D, \omega_0+1) \)-refinable space that is not weak \(\bar{\theta} \)-refinable.

Acknowledgment

The authors would like to thank the referees for several helpful comments concerning the paper.

References

Department of Mathematics, Bluefield College, Bluefield, Virginia 24605-1799

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0123