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A MEASURE THEORETICAL SUBSEQUENCE CHARACTERIZATION
OF STATISTICAL CONVERGENCE

HARRY I. MILLER

Abstract. The concept of statistical convergence of a sequence was first intro-

duced by H. Fast. Statistical convergence was generalized by R. C. Buck, and

studied by other authors, using a regular nonnegative summability matrix A in

place of C\ .
The main result in this paper is a theorem that gives meaning to the state-

ment: S= {sn} converges to L statistically (T) if and only if "most" of the

subsequences of 5 converge, in the ordinary sense, to L . Here T is a regular,

nonnegative and triangular matrix.

Corresponding results for lacunary statistical convergence, recently defined

and studied by J. A. Fridy and C. Orhan, are also presented.

Introduction

The concept of the statistical convergence of a sequence of reals S = {s„}

was first introduced by H. Fast [9].

The sequence S = {s„} is said to converge statistically to L and we write

lim sn = L (stat)   if for every e > 0,
n—»oo

lim n~x\{k < n : \sk - L\ > e}\ = 0,
n—>oo

where \A\ denotes the cardinality of the set A.
Properties of statistically convergent sequences were studied in [5, 6, 12, and

16]. In [13] Fridy and Miller gave a characterization of statistical convergence

for bounded sequences using a family of matrix summability methods.
Statistical convergence can be generalized by using a regular nonnegative

summability matrix A in place of C\. This idea was first mentioned by
R. C. Buck [3] in 1953 and has been further studied by Sember and Freed-
man ([10 and 11]) and Connor ([5 and 7]). Regular nonnegative summability

matrices turn out to be too general for our purposes here, instead we use the

concept of a mean.

A matrix T = (amn ) will be called a mean if amn > 0 when n <m, amn = 0

if n > m, Y^=\ amn = 1 for all m and limm_0O amn = 0 for each n .

If T = (amn) is a mean, following Buck, a sequence S = {sn} is said to be

statistically T-summable to L and we write

sn -> L (stat T)   if for every e > 0
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1812 H. I. MILLER

we have
oo

y^ [amn : \s„ - L\ > e] -» 0   asm-»oo.

n=\

The main result in this paper is a theorem that gives meaning to the state-

ment S = {s„} converges to L statistically (T) if and only if "most" of the

subsequences of S converge, in the ordinary sense, to L.

In [14] and [15] Fridy and Orhan studied lacunary statistical convergence.

We will present a measure theoretical subsequence characterization of lacunary

statistical convergence.

Results. We recall that Fridy proved [12] that a sequence S is statistically con-

vergent if and only if there exists a subset A of N (the natural numbers), having

density zero, such that the subsequence of S obtained by removing the terms

of 5 with indices in A is convergent in the ordinary sense. Here, A having

density zero means

lim n_1|{A:<« : k e A}\ = 0.
n—»oo

Our first step toward obtaining a subsequence characterization of statistical
(T) convergence is the following generalization of the result of Fridy just men-

tioned. In the statement of our theorem we will need a definition of T-density
zero.

If T = (amn) is a mean, then a subset A of N is said to have T-density

zero if

lim Va™ = 0.
m—»oo *—'

WEA

Theorem 1. sn —> L (stat T) if and only if there is a subset A of N such that

s„k -* L (in the usual sense) as k —► oo, where N\A — {nk : k e N} and A has
T-density zero.

Proof. Suppose s„ —► L (statT). For each e„ = j¡, « = 2,3,..., there exists

a positive integer rn (with the sequence {rn}^=2 strictly increasing) such that

r, 1
ark :\Sk-L\>-

1

«2
(*) r > r„ implies ^

k=\

Set,

°°i f 11
A = (J < k : rn < k < rn+i and \sk - L\ > - \ .

n=2 *■ '

The subsequence of S obtained by removing the terms with indices in A

clearly converges, in the ordinary sense, to L.

We will now show that A has T-density zero. Let e > 0. There exists an
n(e) e N such that

oo .El       e
V2<r

n=n(c)

The regularity of T implies there exists an Rn^ , a term in the sequence {r„}

with index larger than «(e), i.e., R„^ = rm(e), m(e) > «(e), such that

rn(e)-l e

^2 an < 5    for all r > Rn{e) (= rm(e)).
¿=i z
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Now suppose r > rm^ . We have

(**) ¿2a" ̂  zZUri+ ¿Z a n )

ieA i<r„(s) ieA
i>r„i.)

with r > rm{E) > r„w, r¡ < r < rj+l , so

¿2 a" =       ¿Z       a"+        ¿2       °rt + • • • +    ¿2    a"
i€A ieA ieA ieA

i>r„M r„{e)<i<r„M+¡ ''„((.)+1<i<r„w+2 rj<i<rJ+i

1 1 1_       v^  J_     £
< «2(e) + («(e) + l)2+'" + j2<  ^  n2< 2

v  '       v   v  ' ' n=n{e)

by (*) and the definition of A . So, by (**)

¿Zari<2 + 2      lír- rm{e) '
ieA

or A has T-density zero.

Now we look at the converse. Suppose that A has T-density zero, {nk} =

N\/i and s„k -* L (in the ordinary sense). We must show that sn —» L (stat T).

Let e > 0. Then there exists a k(e) such that k > k(e) implies \s„k - L\ < e
and therefore

zZ [^ : lJ* ~ Ll - £i
it

< ¿2   ark +    Y,   {"* '■ \Sk - ¡A > e]
k<"kM k>nkM

< ¿2 a^ + Y, ^ '-kzA].
k<nkM

lim^oo Y.k<nk(e) ark = 0 since T is regular and limr^oo E lark : k e A] = 0

because A has T-density 0.   D

We now observe that there is a one-to-one onto correspondence between the

interval (0,1] and the collection of all subsequences of the sequence S =
{s„}. Namely, if x e (0, 1], then x has a unique binary expansion x =

¿~! e„(x)2~", e„(x) e {0, 1}, with infinitely many ones. For each x e
(0, 1], let S(x) denote the subsequence of 5 obtained by the following rule:

s„ is in the subsequence S(x) if and only if e„(x) = 1. Clearly the mapping

x h-> S(x) is a one-to-one onto mapping between (0,1] and the collection of

all subsequences of S.

Suppose T is a mean and sn —> L (stat T). It is natural to consider the set

Cl '■— {x € (0, 1] : S(x) converges to L}.

This set may well have Lebesgue measure zero as the following example shows

and hence "most" of the subsequences of S = {sn}, in the sense of Lebesgue

measure, need not converge to L.

Example 1. Let T denote the (C, 1) matrix and hence (statT) convergence

is statistical convergence.   Let A be any infinite subset of N having density
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1814 H. I. MILLER

zero. Define S = {sn} as follows.   sn = I if n £ A and s„ = 0 if « e A.

Two easy applications of Borel's normal number theorem [2, p. 9] shows that

m({x e (0, 1] : S(x) has infinitely many zero terms and

infinitely many one terms}) = 1

where m is Lebesgue measure. Also, lim„_00 sn = 1 (stat).

This example shows that to get the theorem mentioned in the introduction it

will be necessary to use a measure different from Lebesgue measure.

In the following, if A = {kn} is any subset of N, m a will denote the unique

probability measure defined on the Borel subsets of (0, 1 ] having the following

property:

^£(0,1]:^) = !})=     \
ifJÏA,

2»     II J = K-n

and {e„(x)}'^=l is a sequence of independent random variables with respect to

mA ■ See [1].

To get a little better feel for m a , consider the following inductive process.
Suppose mA has been defined for the

21 half   closed   intervals   of   length       \,

22 half   closed   intervals   of   length       j¿,

2-'  '       half   closed   intervals   of   length       ¿t^t •

Each of the last-mentioned 2J :_1 intervals / is divided into two abutting half-

closed intervals of length ^ , call them / (left) and / (right), the domain of

mA is extended as follows:

mA(I(Mt)) = \mA(I) (if j £ A)

mA(I(ñgit)) = ímA(I)

m¿(/(left)) = (l-£)/M/)    ,„...,
mA(I(ñ^it)) = ^mA(I). &J-**)-

m a is the unique probability measure on the Borel subset of (0, 1] whose

values on half-closed dyadic subintervals are given above.

The purpose of using ^ instead of 5 when j = k„ is to avoid "picking"

elements of the "bad" set A .
We are now ready to prove the main result in this paper.

Theorem 2. Suppose T = (amn) is a mean. The sequence S = {sn} converges

(statT) to L (i.e., sn —> L (statT)) if and only if there exists a subset A of N

having T-density zero such that

(jx € (0, 1] : }}m(S(x))n = l|) = 1.mA(CL) = mA\Ax e (0, 1] : Um (S(x))

Proof. Suppose sn —► L (stat T). Then, by Theorem 1, there exists a subset A

of N, having T-density zero such that {x„k} converges, in the ordinary sense,

to L, where {nk:keN} = N\A .
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STATISTICAL CONVERGENCE 1815

Notice that S(x) converges to L if {« € A : en(x) = 1} is a finite set.

However, by the first part of the Borel-Cantelli Lemma (see [2, p. 46])

mA({x € (0, 1] : {« e A : e„(x) = 1} is infinite}) = 0

since 2ZneAmA{x & (0, I] : e„(x) = 1} = Y^i F *s convergent. Therefore
mA(CL) = 1.

Suppose now that S = {s„} is not statistically (T) convergent and A is

any subset of N having T-density zero. Then, by Theorem 1 {s„k}, where

{«¿t} = N\A, does not converge. Then we have either

lim s„k =+oo   for some subsequence {nk} of {nk}

or
lim sn   =-oo   for some subsequence {«^} of {«^}

j-.cc       i '

or there exist X < p and two infinite subsets B and C of N such that Ar\B =

AnC - BnC - 0 and sn < p if « e B and sn > p if n e C.
Now, since mA({x 6 (0, 1] : en(x) = 1}) = j if n £ A, we have

OO j

In Case 1,    ^«^({xe (0, l]:e„kj(x)= 1}) = ^- = oo.

j=i
oo i

In Case 2,     ^«^({x: (0, 1]:^,(x) = 1}) = ]£-= oo.

j=i

In Case 3,     y^- = oo = y^- = oo.

So, by the second part of the Borel-Cantelli Lemma [2, p. 48] we have:

In Case 1,   m^({jc € (0, 1] : e„k (x) = 1 for infinitely many j}) = 1.

In Case 2,   mA({x e (0, 1] : e„k\x) = 1 for infinitely many j}) - 1.

In Case 3,   mA({x e (0, 1] : e„(x) — 1 for infinitely many n £ B and

also for infinitely many n e C}) = 1.

Therefore, in each of the above three cases we have

mA({x € (0, 1] : S(x) is convergent}) = 0.   D

Example 1 shows that s„ —► L (statT), where S = {s„} is a sequence and

T is a mean, does not imply that

m({x € (0, 1] : S(x) is convergent}) = 1.

It is natural to ask if

(*)       sn -> L (stat T) implies m({x e (0, 1] : (S(jt))„ -» L (stat T)}) = 1.

It is easy to construct examples to show that (*) does not hold in general.

A matrix summability method is said to have the Borel property if it sums
"almost all" sequences of 0's and l's to the value \ ; see [8, p. 207]. It is more
involved to find a mean T that has the Borel property and a sequence S = {sn}

such that s„ -► L (stat T) but

m({x € (0, 1] : (S(x))„ -> L (statT)}) = 0.
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1816 H. I. MILLER

Example 2. Let 5 = {s„} = {1,0, 1,0, 1,...}. Let T be the mean defined in
the following way. a\ \ = 1 and for each row m, m > 2, spread the total weight

1 _ m eQuany m the odd columns and spread the total weight ^ equally in the

even columns. Of course, amn = 0 if « > m . Then T is a mean satisfying the

Borel property (see [6, p. 211]) and

s„ -» 1 (stat T).

To show that m({x e (0, 1] : S(x) is (stat 77) convergent}) = 0, we con-

sider the sequences {X„}^=1 of random variables on the probability space
((0, I], 38, m), where 38 are the Borel subsets of (0, 1], that are defined

in the following manner. For each x in (0,1]:

f   1     if(S(x))y¿(S(x))3,

11 }     \0   if(S(x))l = (S(x)h,
f l   if(S(x))5¿(S(x))7,

2[ '     10   if (S(x))5 = (S(x)h,

Set
v  _ X\ -f x2 + • ■ • + xn
*n —

«

A little reflection shows that there exists an a > 0 such that:

m([Xi =0])>a,    m([Xx = 1]) > a

and for each « > 2 and i\, i2,..., iH+\ e {0, 1}

m([X„ = i„+i\Xi = iu ... , Xn = in]) > a.

This implies that (see [3])

m((x e (0, 1] : hminf Yn(x) > o] ) = 1.

Moreover, if liminf„_oc Yn(x) > 0, S(x) is not convergent (stat 77) and hence

m({x 6 (0, 1] : S(x) is (stat 77) convergent}) = 0.

Despite the above example we do have a characterization of statistical con-

vergence.

Theorem 3. The sequence S = {sn} converges statistically to L (i.e., lim„_0O.s'„

= L (stat)) if and only if

m(ix € (0, 1] : lim (S(x))„ = L (stat) j) = 1

Proof. Suppose lim„_00 i„ = L (stat) and x e (0, 1] is a normal number, i.e.,

¿ ELi ek(x) -► 5 as « -► oo. Then S(x) = {sni ,s„2,...} where lim^oo f =

2. Let e > 0. Then

i|{i < k : \sn¡ -L\> e}\ < i|{j < nk : \st -L\> e}\

= nk \{i^nk: \SJ~L\ ^6>l    i 2 0 = 0

k nk
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as k —» oo. Therefore lim„—oo(S(x))n = L (stat) if x is a normal number.

Since M = {x : (0, 1] : x is a normal} has Lebesgue measure one the proof of

the forward implication is complete.

Conversely, assume

m(ix € (0, 1] : Um (S(x))n = L (stat) j J =

Then there exist two disjoint subsets {nk : k e N} and {n'k : k e N} of N such

that:

(1) {nk:keN}U{n'k:keN} = -N,

(2) lim^oo f = 2 = lim^«, £ , and
(3) s„k -> L (stat)   sn>k -» L (stat).

These three properties imply that

5„ —» L (stat),  completing the proof.    D

Remark 1. Suppose 0 < c\ < 1 < c2 and 77 = (amn) is a mean satisfying

Ci c2
(**) — < amn < —   for each meN and n = 1, 2, 3, ... , m.

m m

Then s„ -* L (stat) if and only if s„ —» L (stat 77). Therefore Theorem 3 can

be extended to (stat T) convergence if T satisfies (**).

Fridy and Orhan in [14] and [15] studied lacunary statistical convergence.

By a lacunary sequence we mean an increasing sequence of positive integers

6 — {kr} such that hr : kr - kr-\ —► oo as r —> oo. In the following we denote

by Ir :— (kr-\, kr]. Let 6 be a lacunary sequence; they defined the sequence

of numbers S = {sn} to be Sg-convergent to L provided for every e > 0,

lim «r_1|{A: € Ir : \sk - L\ > e}\ = 0
r—»oo

and we write sn —» L(So).

The following result is an analogue of a theorem of Fridy for statistical con-

vergence that can be found in [8] and related to Theorem 1 in this paper.

Theorem 4. The sequence S = {s„} satisfies s„ -> L(Se) for a lacunary sequence

6 = {kr} if and only if there exists a subset A of the natural numbers such that

the subsequence of S obtained by removing the terms of S with indices in A

converges to L in the ordinary sense and limr_o0 \A n l,\ • h~l -0.

Proof. Suppose A is a subset of N such that lim,-,,^ \AnIr\-h~l =0 and the

subsequence of S obtained by removing the terms with indices in A converges

in the ordinary sense to L. Then given e > 0,

h-l\{keIr:\sk-L\ >e}\ < A-*|^4 n Zr|

for sufficiently large r and hence sn —» L(Sg).

Conversely, suppose s„ -» L(Se).   Then there exists a strictly increasing
sequence of positive integers {rn} suchthat

\UeIr: Ni - l\ > \
1

< -
«

for all r > rn
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Let
oo   I ri+i-l .  j

A = \jlke   (J  IJ:\sk-L\>1\

Then lim^oo \Ir n A\ -hr ' =0 and the subsequence of S = {s„} obtained by

removing the terms of S with indices in A converges in the ordinary sense to

L.
The last theorem can be used to obtain a Se -convergence analogue of the

proof of Theorem 2. Namely, we have the following:

Theorem 5. The sequence S = {sn} satisfies sn —> L(Sg) for a lacunary sequence

6 — {kr} if and only if there exists a subset A of N such that

Urn \Irr)A\-h~l =0
r—»oo

and

mA(CL) = mA(\x e (0, 1] : Urn (S(x))n = L\\ = 1.

Proof. If s„ -» L(iSe), then w^(C¿) = 1. This follows as in the first half of
the proof of Theorem 2, using Theorem 4.

Suppose now that Sg = {sn} is not S^-convergent and A is a subset of N

satisfying lim,-_00 \Ir n A\ 'h~l = 0. Then, by Theorem 4, the subsequence

{s„k} of S, where {«¿J = N\^4, does not converge. The remainder follows

exactly as in the corresponding part of the proof of Theorem 2.

We conclude by giving an example to show that the S^-convergence analogue

of Theorem 3 is false.

Example 3. Suppose 6 is a lacunary sequence such that h2 — 10, h4 — 12, h(, —

14, ... . Define 5 = {s„} as follows: s„ = 0 if « e Ir and r is odd. If r
is even, the terms of {s„} with indices in Ir are 1, 0, 1, 0, ... , 1, 0. The

sequence «i, «3, «5, ... can be taken large enough, and increasing fast enough

to guarantee:

m(x e (0, 1] : h~x\{k e h : (S(x))k = 0}| > .99) > .99,

m(x e (0, 1] : h^x\{k e I2 : (S(x))k = 0}| > .999) > .999,

By the first part of the Borel-Cantelli Lemma

m({xG(0, 1] : (S(x))n - 0 (Se)}) = 1,

but S„ -* 0 (Sg)
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