## Local subgroups of the Monster and odd code loops

HTML articles powered by AMS MathViewer

- by Thomas M. Richardson
- Trans. Amer. Math. Soc.
**347**(1995), 1453-1531 - DOI: https://doi.org/10.1090/S0002-9947-1995-1266532-4
- PDF | Request permission

## Abstract:

The main result of this work is an explicit construction of $p$-local subgroups of the Monster, the largest sporadic simple group. The groups constructed are the normalizers in the Monster of certain subgroups of order $3^{2}$, $5^{2}$, and $7^{2}$ and have shapes \[ {3^{2 + 5 + 10}}\cdot ({M_{11}} \times GL(2,3)),\quad {5^{2 + 2 + 4}}\cdot {S_3} \times GL(2,5)),\quad {\text {and}}{7^{2 + 1 + 2}}\cdot GL(2,7)\] . These groups result from a general construction which proceeds in three steps. We start with a self-orthogonal code $C$ of length $n$ over the field ${\mathbb {F}_p}$, where $p$ is an odd prime. The first step is to define a code loop $L$ whose structure is based on $C$. The second step is to define a group $N$ of permutations of functions from $\mathbb {F}_p^2$ to $L$. The final step is to show that $N$ has a normal subgroup $K$ of order ${p^2}$. The result of this construction is the quotient group $N/K$ of shape ${p^{2 + m + 2m}}(S \times GL(2,p))$, where $m + 1 = \dim (C)$ and $S$ is the group of permutations of $\text {Aut}(C)$. To show that the groups we construct are contained in the Monster, we make use of certain lattices $\Lambda (C)$, defined in terms of the code $C$. One step in demonstrating this is to show that the centralizer of an element of order $p$ in $N/K$ is contained in the centralizer of an element of order $p$ in the Monster. The lattices are useful in this regard since a quotient of the automorphism group of the lattice is a composition factor of the appropriate centralizer in the Monster. This work was inspired by a similar construction using code loops based on binary codes that John Conway used to construct a subgroup of the Monster of shape ${2^{2 + 11 + 22}}\cdot ({M_{24}} \times GL(2,2))$.## References

- H. F. Blichfeldt,
- Richard Hubert Bruck,
*A survey of binary systems*, Reihe: Gruppentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR**0093552**, DOI 10.1007/978-3-662-35338-7 - J. H. Conway,
*A simple construction for the Fischer-Griess monster group*, Invent. Math.**79**(1985), no. 3, 513–540. MR**782233**, DOI 10.1007/BF01388521 - J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,
*$\Bbb {ATLAS}$ of finite groups*, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR**827219** - J. H. Conway and N. J. A. Sloane,
*Sphere packings, lattices and groups*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR**920369**, DOI 10.1007/978-1-4757-2016-7 - L. Finkelstein and A. Rudvalis,
*Maximal subgroups of the Hall-Janko-Wales group*, J. Algebra**24**(1973), 486–493. MR**323889**, DOI 10.1016/0021-8693(73)90122-1 - Robert L. Griess Jr.,
*Schur multipliers of some sporadic simple groups*, J. Algebra**32**(1974), no. 3, 445–466. MR**382426**, DOI 10.1016/0021-8693(74)90151-3 - Robert L. Griess Jr.,
*The friendly giant*, Invent. Math.**69**(1982), no. 1, 1–102. MR**671653**, DOI 10.1007/BF01389186
—, - Robert L. Griess Jr.,
*Code loops*, J. Algebra**100**(1986), no. 1, 224–234. MR**839580**, DOI 10.1016/0021-8693(86)90075-X - Robert L. Griess Jr.,
*A Moufang loop, the exceptional Jordan algebra, and a cubic form in $27$ variables*, J. Algebra**131**(1990), no. 1, 281–293. MR**1055009**, DOI 10.1016/0021-8693(90)90176-O
P. M. Johnson, - Gregory Karpilovsky,
*The Schur multiplier*, London Mathematical Society Monographs. New Series, vol. 2, The Clarendon Press, Oxford University Press, New York, 1987. MR**1200015** - Masaaki Kitazume,
*Code loops and even codes over $\textbf {F}_4$*, J. Algebra**118**(1988), no. 1, 140–149. MR**961332**, DOI 10.1016/0021-8693(88)90054-3 - J. H. Lindsey II,
*A correlation between $\textrm {PSU}_{4}\,(3)$, the Suzuki group, and the Conway group*, Trans. Amer. Math. Soc.**157**(1971), 189–204. MR**283097**, DOI 10.1090/S0002-9947-1971-0283097-8 - J. H. Lindsey II,
*A new lattice for the Hall-Janko group*, Proc. Amer. Math. Soc.**103**(1988), no. 3, 703–709. MR**947642**, DOI 10.1090/S0002-9939-1988-0947642-7 - Jacobus Hendricus van Lint,
*Introduction to coding theory*, Problemy Matematicheskogo Analiza [Problems in Mathematical Analysis], vol. 8, Springer-Verlag, New York-Berlin, 1982. MR**658134**, DOI 10.1007/978-3-662-07998-0
H. Maschke, Math. Ann. - J. G. Thompson,
*Uniqueness of the Fischer-Griess monster*, Bull. London Math. Soc.**11**(1979), no. 3, 340–346. MR**554400**, DOI 10.1112/blms/11.3.340 - J. Tits,
*Quaternions over $\textbf {Q}(\sqrt {5})$, Leech’s lattice and the sporadic group of Hall-Janko*, J. Algebra**63**(1980), no. 1, 56–75. MR**568564**, DOI 10.1016/0021-8693(80)90025-3 - Harold N. Ward,
*A form for $M_{11}$*, J. Algebra**37**(1975), no. 2, 340–361. MR**384907**, DOI 10.1016/0021-8693(75)90083-6 - Harold N. Ward,
*Combinatorial polarization*, Discrete Math.**26**(1979), no. 2, 185–197. MR**535244**, DOI 10.1016/0012-365X(79)90123-7 - Robert A. Wilson,
*The maximal subgroups of Conway’s group $\bfcdot 2$*, J. Algebra**84**(1983), no. 1, 107–114. MR**716772**, DOI 10.1016/0021-8693(83)90069-8

*Finite collineation groups*, Univ. of Chicago Press, Chicago, IL, 1917.

*The Monster and its non-associative algebra*, Proceedings of a Conference on Finite Groups (Montreal, 1985), pp. 121-157. —,

*Code loops and a large finite group containing triality for*${D_4}$, Atti Convegno Internazionale Teoria dei Gruppi e Geometria Combinatoria, Firenze, 1986, pp. 79-98.

*Loops of nilpotence class two*, preprint.

**51**(1899), 253-298.

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 1453-1531 - MSC: Primary 20D08; Secondary 20N05, 94B60
- DOI: https://doi.org/10.1090/S0002-9947-1995-1266532-4
- MathSciNet review: 1266532