Local subgroups of the Monster and odd code loops
HTML articles powered by AMS MathViewer
 by Thomas M. Richardson PDF
 Trans. Amer. Math. Soc. 347 (1995), 14531531 Request permission
Abstract:
The main result of this work is an explicit construction of $p$local subgroups of the Monster, the largest sporadic simple group. The groups constructed are the normalizers in the Monster of certain subgroups of order $3^{2}$, $5^{2}$, and $7^{2}$ and have shapes \[ {3^{2 + 5 + 10}}\cdot ({M_{11}} \times GL(2,3)),\quad {5^{2 + 2 + 4}}\cdot {S_3} \times GL(2,5)),\quad {\text {and}}{7^{2 + 1 + 2}}\cdot GL(2,7)\] . These groups result from a general construction which proceeds in three steps. We start with a selforthogonal code $C$ of length $n$ over the field ${\mathbb {F}_p}$, where $p$ is an odd prime. The first step is to define a code loop $L$ whose structure is based on $C$. The second step is to define a group $N$ of permutations of functions from $\mathbb {F}_p^2$ to $L$. The final step is to show that $N$ has a normal subgroup $K$ of order ${p^2}$. The result of this construction is the quotient group $N/K$ of shape ${p^{2 + m + 2m}}(S \times GL(2,p))$, where $m + 1 = \dim (C)$ and $S$ is the group of permutations of $\text {Aut}(C)$. To show that the groups we construct are contained in the Monster, we make use of certain lattices $\Lambda (C)$, defined in terms of the code $C$. One step in demonstrating this is to show that the centralizer of an element of order $p$ in $N/K$ is contained in the centralizer of an element of order $p$ in the Monster. The lattices are useful in this regard since a quotient of the automorphism group of the lattice is a composition factor of the appropriate centralizer in the Monster. This work was inspired by a similar construction using code loops based on binary codes that John Conway used to construct a subgroup of the Monster of shape ${2^{2 + 11 + 22}}\cdot ({M_{24}} \times GL(2,2))$.References

H. F. Blichfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, IL, 1917.
 Richard Hubert Bruck, A survey of binary systems, Reihe: Gruppentheorie, SpringerVerlag, BerlinGöttingenHeidelberg, 1958. MR 0093552, DOI 10.1007/9783662353387
 J. H. Conway, A simple construction for the FischerGriess monster group, Invent. Math. 79 (1985), no. 3, 513–540. MR 782233, DOI 10.1007/BF01388521
 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
 J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, SpringerVerlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/9781475720167
 L. Finkelstein and A. Rudvalis, Maximal subgroups of the HallJankoWales group, J. Algebra 24 (1973), 486–493. MR 323889, DOI 10.1016/00218693(73)901221
 Robert L. Griess Jr., Schur multipliers of some sporadic simple groups, J. Algebra 32 (1974), no. 3, 445–466. MR 382426, DOI 10.1016/00218693(74)901513
 Robert L. Griess Jr., The friendly giant, Invent. Math. 69 (1982), no. 1, 1–102. MR 671653, DOI 10.1007/BF01389186 —, The Monster and its nonassociative algebra, Proceedings of a Conference on Finite Groups (Montreal, 1985), pp. 121157. —, Code loops and a large finite group containing triality for ${D_4}$, Atti Convegno Internazionale Teoria dei Gruppi e Geometria Combinatoria, Firenze, 1986, pp. 7998.
 Robert L. Griess Jr., Code loops, J. Algebra 100 (1986), no. 1, 224–234. MR 839580, DOI 10.1016/00218693(86)90075X
 Robert L. Griess Jr., A Moufang loop, the exceptional Jordan algebra, and a cubic form in $27$ variables, J. Algebra 131 (1990), no. 1, 281–293. MR 1055009, DOI 10.1016/00218693(90)90176O P. M. Johnson, Loops of nilpotence class two, preprint.
 Gregory Karpilovsky, The Schur multiplier, London Mathematical Society Monographs. New Series, vol. 2, The Clarendon Press, Oxford University Press, New York, 1987. MR 1200015
 Masaaki Kitazume, Code loops and even codes over $\textbf {F}_4$, J. Algebra 118 (1988), no. 1, 140–149. MR 961332, DOI 10.1016/00218693(88)900543
 J. H. Lindsey II, A correlation between $\textrm {PSU}_{4}\,(3)$, the Suzuki group, and the Conway group, Trans. Amer. Math. Soc. 157 (1971), 189–204. MR 283097, DOI 10.1090/S00029947197102830978
 J. H. Lindsey II, A new lattice for the HallJanko group, Proc. Amer. Math. Soc. 103 (1988), no. 3, 703–709. MR 947642, DOI 10.1090/S00029939198809476427
 Jacobus Hendricus van Lint, Introduction to coding theory, Problemy Matematicheskogo Analiza [Problems in Mathematical Analysis], vol. 8, SpringerVerlag, New YorkBerlin, 1982. MR 658134, DOI 10.1007/9783662079980 H. Maschke, Math. Ann. 51 (1899), 253298.
 J. G. Thompson, Uniqueness of the FischerGriess monster, Bull. London Math. Soc. 11 (1979), no. 3, 340–346. MR 554400, DOI 10.1112/blms/11.3.340
 J. Tits, Quaternions over $\textbf {Q}(\sqrt {5})$, Leech’s lattice and the sporadic group of HallJanko, J. Algebra 63 (1980), no. 1, 56–75. MR 568564, DOI 10.1016/00218693(80)900253
 Harold N. Ward, A form for $M_{11}$, J. Algebra 37 (1975), no. 2, 340–361. MR 384907, DOI 10.1016/00218693(75)900836
 Harold N. Ward, Combinatorial polarization, Discrete Math. 26 (1979), no. 2, 185–197. MR 535244, DOI 10.1016/0012365X(79)901237
 Robert A. Wilson, The maximal subgroups of Conway’s group $\bfcdot 2$, J. Algebra 84 (1983), no. 1, 107–114. MR 716772, DOI 10.1016/00218693(83)900698
Additional Information
 © Copyright 1995 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 347 (1995), 14531531
 MSC: Primary 20D08; Secondary 20N05, 94B60
 DOI: https://doi.org/10.1090/S00029947199512665324
 MathSciNet review: 1266532