Tate cohomology of periodic $K$-theory with reality is trivial
HTML articles powered by AMS MathViewer
- by Lisbeth Fajstrup
- Trans. Amer. Math. Soc. 347 (1995), 1841-1846
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273490-5
- PDF | Request permission
Abstract:
We calculate the $RO(\mathbb {Z}/2)$-graded spectrum for Atiyah’s periodic $K$-theory with reality and the Tate cohomology associated to it. The latter is shown to be trivial.References
- M. F. Atiyah, $K$-theory and reality, Quart. J. Math. Oxford Ser. (2) 17 (1966), 367–386. MR 206940, DOI 10.1093/qmath/17.1.367
- Tammo tom Dieck, Faserbündel mit Gruppenoperation, Arch. Math. (Basel) 20 (1969), 136–143 (German). MR 245027, DOI 10.1007/BF01899003 J. P. C. Greenlees and J. P. May, Generalized Tate, Borel and coBorel cohomology, Preprint, Univ. of Chicago, 1993.
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778 J. P. May, Lecture notes from the NSF/CBMS regional research conference on equivariant homotopy and cohomology theory, in Fairbanks Alaska, August, 1993.
- J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337–341. MR 159327, DOI 10.2140/pjm.1962.12.337
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1841-1846
- MSC: Primary 55P91; Secondary 19L47, 55N15, 55N91, 55P42
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273490-5
- MathSciNet review: 1273490