On the oscillation of differential equations with an oscillatory coefficient
Authors:
B. J. Harris and Q. Kong
Journal:
Trans. Amer. Math. Soc. 347 (1995), 1831-1839
MSC:
Primary 34C10
DOI:
https://doi.org/10.1090/S0002-9947-1995-1283552-4
MathSciNet review:
1283552
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We derive lower bounds for the distance between consecutive zeros of solutions of \[ ( * )\quad y" + q(t)y = 0\] when $q$ takes both positive and negative values. We apply our results to the limit point/limit circle classifications of $( * )$.
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
- B. J. Harris, On an inequality of Lyapunov for disfocality, J. Math. Anal. Appl. 146 (1990), no. 2, 495–500. MR 1043117, DOI https://doi.org/10.1016/0022-247X%2890%2990319-B
- Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
- Man Kam Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981), no. 2, 486–494. MR 641347, DOI https://doi.org/10.1016/0022-247X%2881%2990137-2
- Man Kam Kwong, On certain Riccati integral equations and second-order linear oscillation, J. Math. Anal. Appl. 85 (1982), no. 2, 315–330. MR 649178, DOI https://doi.org/10.1016/0022-247X%2882%2990004-X
- W. T. Patula and J. S. W. Wong, An $L^{p}$-analogue of the Weyl alternative, Math. Ann. 197 (1972), 9–28. MR 299865, DOI https://doi.org/10.1007/BF01427949
- Ju Rang Yan, On the distance between zeroes and the limit-point problem, Proc. Amer. Math. Soc. 107 (1989), no. 4, 971–975. MR 984825, DOI https://doi.org/10.1090/S0002-9939-1989-0984825-5
Retrieve articles in Transactions of the American Mathematical Society with MSC: 34C10
Retrieve articles in all journals with MSC: 34C10
Additional Information
Article copyright:
© Copyright 1995
American Mathematical Society