Singular limit of solutions of $u_ t=\Delta u^ m-A\cdot \nabla (u^ q/q)$ as $q\to \infty$
HTML articles powered by AMS MathViewer
- by Kin Ming Hui
- Trans. Amer. Math. Soc. 347 (1995), 1687-1712
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290718-6
- PDF | Request permission
Abstract:
We will show that the solutions of ${u_t} = \Delta {u^m} - A\nabla ({u^q}/q)$ in ${R^n} \times (0,T),T > 0,m > 1,u(x,0) = f(x) \in {L^1}({R^n}) \cap {L^\infty }({R^n})$ converge weakly in ${({L^\infty }(G))^ * }$ for any compact subset $G$ of ${R^n} \times (0,T)$ as $q \to \infty$ to the solution of the porous medium equation ${\upsilon _t} = \Delta {\upsilon ^m}$ in ${R^n} \times (0,T)$ with $\upsilon (x,0) = g(x)$ where $g \in {L^1}({R^n}),0 \leqslant g \leqslant 1$, satisfies $g(x) + {(g(x))_{{x_1}}} = f(x)\quad {\text {in}}\quad \mathcal {D}’\left ( {{R^n}} \right )$ for some function $\tilde {g}(x) \in {L^1}({R^n}),\quad \tilde {g}(x) \geqslant 0$ such that $g(x) = f(x),\quad \tilde {g}(x) = 0$ whenever $g(x) < 1$ a.e. $x \in {R^n}$. The convergence is uniform on compact subsets of ${R^n} \times (0,T)\quad {\text {if}}\quad f \in {C_0}({R^n})$.References
- Jeffrey R. Anderson, Local existence and uniqueness of solutions of degenerate parabolic equations, Comm. Partial Differential Equations 16 (1991), no. 1, 105–143. MR 1096835, DOI 10.1080/03605309108820753
- D. G. Aronson, The porous medium equation, Nonlinear diffusion problems (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1224, Springer, Berlin, 1986, pp. 1–46. MR 877986, DOI 10.1007/BFb0072687
- G. I. Barenblatt, On self-similar motions of a compressible fluid in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 679–698 (Russian). MR 0052948 P. Bénilan, L. Boccardo and M. Herrero, On the limit of solutions of ${u_t} = \Delta {u^m}$ as $m \to \infty$, Some Topics in Nonlinear PDE’s, Proceedings Int. Conf. Torino 1989, M.Bertsch et al., ed.
- Luis A. Caffarelli and Avner Friedman, Asymptotic behavior of solutions of $u_t=\Delta u^m$ as $m\to \infty$, Indiana Univ. Math. J. 36 (1987), no. 4, 711–728. MR 916741, DOI 10.1512/iumj.1987.36.36041
- Björn E. J. Dahlberg, Eugene B. Fabes, and Carlos E. Kenig, A Fatou theorem for solutions of the porous medium equation, Proc. Amer. Math. Soc. 91 (1984), no. 2, 205–212. MR 740172, DOI 10.1090/S0002-9939-1984-0740172-3
- Björn E. J. Dahlberg and Carlos E. Kenig, Nonnegative solutions of generalized porous medium equations, Rev. Mat. Iberoamericana 2 (1986), no. 3, 267–305. MR 908054, DOI 10.4171/RMI/34
- Jesus Ildefonso Diaz and Robert Kersner, On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium, J. Differential Equations 69 (1987), no. 3, 368–403. MR 903393, DOI 10.1016/0022-0396(87)90125-2
- Miguel Escobedo and Enrike Zuazua, Large time behavior for convection-diffusion equations in $\textbf {R}^N$, J. Funct. Anal. 100 (1991), no. 1, 119–161. MR 1124296, DOI 10.1016/0022-1236(91)90105-E
- Juan R. Esteban, Ana Rodríguez, and Juan L. Vázquez, A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations 13 (1988), no. 8, 985–1039. MR 944437, DOI 10.1080/03605308808820566
- B. H. Gilding, Properties of solutions of an equation in the theory of infiltration, Arch. Rational Mech. Anal. 65 (1977), no. 3, 203–225. MR 447847, DOI 10.1007/BF00280441
- B. H. Gilding, A nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 3, 393–432. MR 509720
- Miguel A. Herrero and Michel Pierre, The Cauchy problem for $u_t=\Delta u^m$ when $0<m<1$, Trans. Amer. Math. Soc. 291 (1985), no. 1, 145–158. MR 797051, DOI 10.1090/S0002-9947-1985-0797051-0
- Kin Ming Hui, Asymptotic behaviour of solutions of $u_t=\Delta u^m-u^p$ as $p\to \infty$, Nonlinear Anal. 21 (1993), no. 3, 191–195. MR 1233960, DOI 10.1016/0362-546X(93)90109-6 K. M. Hui, Singular limit of solutions of the generalized $p$-Laplacian equation, Nonlinear Anal., TMA (to appear).
- Robert Kersner, Degenerate parabolic equations with general nonlinearities, Nonlinear Anal. 4 (1980), no. 6, 1043–1062. MR 591298, DOI 10.1016/0362-546X(80)90015-2 O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monos., Vol. 23, Amer. Math. Soc., Providence, RI, 1968.
- Arturo de Pablo and Juan Luis Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations 93 (1991), no. 1, 19–61. MR 1122305, DOI 10.1016/0022-0396(91)90021-Z L. A. Peletier, The porous medium equation, Applications of Nonlinear Analysis in the Physical Sciences, (H. Amann, N. Bazley, and K. Kirchgassner, eds.), Pitman, Boston, 1981.
- Paul E. Sacks, Continuity of solutions of a singular parabolic equation, Nonlinear Anal. 7 (1983), no. 4, 387–409. MR 696738, DOI 10.1016/0362-546X(83)90092-5
- Paul E. Sacks, A singular limit problem for the porous medium equation, J. Math. Anal. Appl. 140 (1989), no. 2, 456–466. MR 1001869, DOI 10.1016/0022-247X(89)90077-2
- R. E. Showalter and Xiangsheng Xu, An approximate scalar conservation law from dynamics of gas absorption, J. Differential Equations 83 (1990), no. 1, 145–165. MR 1031381, DOI 10.1016/0022-0396(90)90072-W
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Xiangsheng Xu, Asymptotic behaviour of solutions of hyperbolic conservation laws $u_t+(u^m)_x=0$ as $m\to \infty$ with inconsistent initial values, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), no. 1-2, 61–71. MR 1025454, DOI 10.1017/S0308210500023957
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1687-1712
- MSC: Primary 35K55; Secondary 35B40
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290718-6
- MathSciNet review: 1290718