SINGULAR LIMIT OF SOLUTIONS OF
\[u_t = \Delta u^m - A \cdot \nabla (u^q/q) \text{ as } q \to \infty \]

KIN MING HUI

Abstract. We will show that the solutions of \(u_t = \Delta u^m - A \cdot \nabla (u^q/q) \) in \(\mathbb{R}^n \times (0, T) \), \(T > 0 \), \(m > 1 \), \(u(x, 0) = f(x) \in L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) \) converge weakly in \((L^\infty(G))^* \) for any compact subset \(G \) of \(\mathbb{R}^n \times (0, T) \) as \(q \to \infty \) to the solution of the porous medium equation \(v_t = \Delta v^m \) in \(\mathbb{R}^n \times (0, T) \) with \(v(x, 0) = g(x) \) where \(g \in L^1(\mathbb{R}^n) \), \(0 \leq g \leq 1 \), satisfies \(g(x) + (\tilde{g}(x))_{x_1} = f(x) \) in \(\mathcal{D}'(\mathbb{R}^n) \) for some function \(\tilde{g}(x) \in L^1(\mathbb{R}^n) \), \(\tilde{g}(x) \geq 0 \) such that \(g(x) = f(x) \), \(\tilde{g}(x) = 0 \) whenever \(g(x) < 1 \) a.e. \(x \in \mathbb{R}^n \). The convergence is uniform on compact subsets of \(\mathbb{R}^n \times (0, T) \) if \(f \in C^0(\mathbb{R}^n) \).

In this paper we will study the asymptotic behaviour of nonnegative solutions \(u = u(x) \) of the equation
\[
\begin{cases}
 u_t = \Delta u^m - A \cdot \nabla (u^q/q), & (x, t) \in \mathbb{R}^n \times (0, T), \\
 u(x, 0) = f(x) \geq 0, & f \in L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n),
\end{cases}
\]
where \(0 \neq A = (a_1, a_2, \ldots, a_n) \in \mathbb{R}^n \) is a constant vector, \(T > 0 \), \(m > 1 \), as \(q \to \infty \). Recently there is a lot of research on the above equation ([A],[DiK],[G1],[G2]) The equation arises in many physical applications such as the flow of water through a homogeneous isotropic rigid porous medium [G1]. When \(A = 0 \), the above equation reduces to the well-known porous medium equation ([Ar],[P]). In the paper [CF], Caffarelli and A. Friedman studied the asymptotic behaviour of solutions of (0.1) when \(A = 0 \) and showed that the solutions of (0.1) converge as \(m \to \infty \) if \(f \) satisfies (0.1) and the following conditions:

\[
\begin{align*}
 f &\in C^1 \text{ in supp } f, \\
 f(0) > 1, &\quad f_r < 0 \text{ in } \mathbb{R}^n \setminus \{0\} \cap \text{supp } f, \\
 f_{r_{x_0}} &\leq 0 \text{ in } \mathbb{R}^n \setminus B_r(0) \cap \text{supp } f \quad \forall x_0 \in B_{r_0}(0)
\end{align*}
\]

for some \(e_0 > 0 \) where \(r_{x_0} = |x - x_0| \), \(B_r(0) = \{ x : |x| < r \} \) and \(f_{r_{x_0}} \) is the radial derivative of \(f \) with center at \(x_0 \).

This result has been extended in various directions by P. Bénilan, L. Boccardo and M. Herrero [BBH], P. E. Sacks [S2] in the case \(A = 0 \), X. Xu [X] in the case of hyperbolic equations and K. M. Hui [H1], [H2] in the case of a porous
medium equation with absorption and in the case of the generalized p-Laplacian equation.

For simplicity we will assume that $T = 1$ and $A = (1, 0, \ldots, 0)$ throughout the rest of the paper. We will show that as $q \to \infty$, the convection term in (0.1) disappears. More precisely, we will show that for fixed $m > 1$ the solutions $u = u^{(q)}$ of (0.1) converge weakly in $(L^\infty(G))^*$ for any compact subset G of $R^n \times (0, 1)$ as $q \to \infty$. Moreover the limit $u^{(\infty)} = \lim_{q \to \infty} u^{(q)}$ satisfies the porous medium equation

$$
\begin{cases}
u_t = \Delta v^m, & (x, t) \in R^n \times (0, 1), \\
u(\cdot, t) \searrow g & \text{as } t \to 0 \text{ in } D'(R^n),
\end{cases}
$$

where $g \in L^1(R^n)$, $0 \leq g \leq 1$, satisfies

$$
g(x) + (\tilde{g}(x))_{x_i} = f(x) \text{ in } D'(R^n)
$$

for some function $\tilde{g}(x) \geq 0$, $\tilde{g}(x) \in L^1(R^n)$ and $g(x) = f(x)$, $\tilde{g}(x) = 0$ whenever $g(x) < 1$ a.e. $x \in R^n$. This extends the recent results obtained by M. Escobedo and E. Zuazua [EZ], who showed that the convection term was negligible compared with the other terms appearing in (0.1) for the case $m = 1$ and $q > 1 + 1/n$ as $t \to \infty$. Although we were not able to prove it, we suspect that the same result should remain valid when $A = A(x) \in L^\infty(R^n)$.

We will first start with some definitions. For any open set $Q_0 \subset R^n$, $h \in C(R)$, we say that u is a solution (respectively subsolution, supersolution) of

$$
u_t = \Delta u^m - (h(u))_{x_i} \text{ in } Q_0 \times (0, 1)
$$

if u is continuous and nonnegative in $Q_0 \times (0, 1)$, $u \in L^\infty([0, 1]; L^1(Q_0)) \cap L^\infty(Q_0 \times (0, 1))$ and satisfies

$$
\int_{\tau_1}^{\tau_2} \int_{Q_0} [u^m \Delta \eta + u \frac{\partial \eta}{\partial t} + h(u) \eta_{x_i}] \, dx \, dt = \int_{\tau_1}^{\tau_2} \int_{\partial Q_0} u^m \frac{\partial \eta}{\partial N} \, ds \, ds + \int_{\tau_1}^{\tau_2} \int_{Q_0} u \eta \, dx
$$

(respectively $>$, $< $) for all bounded open sets $Q \subset Q_0$ with $\partial Q \in C^2$, $0 < \tau_1 \leq \tau_2 < 1$, $\eta \in C^\infty(\Omega \times [\tau_1, \tau_2])$, $\eta \equiv 0$ on $\partial Q \times [\tau_1, \tau_2]$ where $\partial / \partial N$ is the exterior normal derivative on ∂Q and $d\sigma$ is the surface measure on ∂Q.

If u is a solution of (0.4) in $\Omega_0 \times (0, 1)$, we say that u has initial trace or initial value du if

$$
\lim_{t \to 0} \int u(x, t) \eta(x) \, dx = \int \eta \, du \quad \forall \eta \in C_0^\infty(\Omega_0).
$$

We let $\rho \in C_0^\infty(R^n)$, $\rho \geq 0$, $\int \rho = 1$ and for any g we define

$$
g_\varepsilon = g \ast \rho_\varepsilon(x) = \int \rho_\varepsilon(x - y) g(y) \, dy, \quad \varepsilon > 0,
$$

where $\rho_\varepsilon(y) = \rho(y/\varepsilon) / \varepsilon^n$. For any $r > 0$, $x_0 \in R^n$, let $B_r(x_0) = \{x \in R^n : |x - x_0| < r\}$. For any set $A \subset R^n$, we let χ_A be the characteristic function of the set A. We will also assume $m > 1$, $q > m + 1$, and let $u^{(q)}$ be the solution of (0.1) for the rest of the paper.

The plan of the paper is as follows. In section 1 we will state and prove the existence of solutions of (0.1). We will also prove a comparison theorem.
for solutions of (0.1) and obtain some bounds on $u^{(q)}$ by constructing explicit supersolutions to (0.1). In section 2 we will first prove a comparison lemma for solutions of (0.3). We then prove the main theorem under the assumption $f \in C^1_c(R^n)$ (Theorem 2.9). Finally we will prove the main theorem (Theorem 2.10) by an approximation argument.

We first state and prove an uniqueness theorem for solutions of (0.1).

Theorem 1.1. If $u_1^{(q)}, u_2^{(q)} \in L^\infty((0, 1); L^1(R^n)) \cap L^\infty(R^n \times (0, 1)) \cap C(R^n \times (0, 1))$ are the solutions of

\[(1.1)
 u_t = \Delta u^m - (u^{q}/q)x_1
\]

in $R^n \times (0, 1)$ with initial values f_1 and $f_2 \in L^1(R^n) \cap L^\infty(R^n)$ respectively, $f_1, f_2 \geq 0$, then there exists a constant $C > 0$ such that

(i) $\int_{R^n} (u_1^{(q)} - u_2^{(q)})_+(x, t)dx \leq e^{Ct} \int_{R^n} (f_1 - f_2)_+(x)dx$,

(ii) $\int_{R^n} |u_1^{(q)} - u_2^{(q)}|(x, t)dx \leq e^{Ct} \int_{R^n} |f_1 - f_2|(x)dx$

for all $0 < t < 1$. Hence $u_1^{(q)} \leq u_2^{(q)}$ if $f_1 \leq f_2$. In particular the solution of (1.1) in $R^n \times (0, 1)$ with initial value in $L^1(R^n) \cap L^\infty(R^n)$ is unique in the class $L^\infty((0, 1); L^1(R^n)) \cap L^\infty(R^n \times (0, 1)) \cap C(R^n \times (0, 1))$.

Proof. The proof of the theorem is similar to the proof of Theorem 2.3 of [A]. By subtracting the equation for $u_1^{(q)}$ and $u_2^{(q)}$, we get

\[
\int_{B_R(0)} (u_1^{(q)} - u_2^{(q)})(x, t)\eta(x, t)dx = \int_{B_R(0)} (f_1 - f_2)(x)\eta(x, 0)dx \\
+ \int_0^t \int_{B_R(0)} (u_1^{(q)} - u_2^{(q)})(\eta_t + A\Delta \eta + B\eta_{x_1})dxd\tau \\
- \int_0^t \int_{\partial B_R(0)} (u_1^{(q)m} - u_2^{(q)m})\frac{\partial \eta}{\partial N}d\sigma d\tau
\]

for all $0 < t < 1$, $\eta \in C^\infty(\overline{B_R(0) \times [0, t]}), R > 0$, such that $\eta \equiv 0$ on $\partial B_R(0) \times [0, t]$ where

\[
A = \begin{cases}
\frac{u_1^{(q)m} - u_2^{(q)m}}{u_1^{(q)} - u_2^{(q)}} & \text{for } u_1^{(q)} \neq u_2^{(q)}, \\
u_1^{(q)m-1} & \text{for } u_1^{(q)} = u_2^{(q)},
\end{cases} \\
B = \begin{cases}
\frac{1}{q} \frac{u_1^{(q)q} - u_2^{(q)q}}{u_1^{(q)} - u_2^{(q)}} & \text{for } u_1^{(q)} \neq u_2^{(q)}, \\
u_1^{(q)q-1} & \text{for } u_1^{(q)} = u_2^{(q)}.
\end{cases}
\]

Since $u_1^{(q)}, u_2^{(q)} \in L^\infty(R^n \times (0, 1))$, there exists a constant $C_1 > 0$ such that

\[
\|u_1^{(q)}\|_{L^\infty(R^n)}, \|u_2^{(q)}\|_{L^\infty(R^n)} \leq C_1 \\
\Rightarrow B^2/2A \leq \frac{1}{2m} C_1^{2q-m-1}, B/A \leq \frac{1}{m} C_1^{q-m}.
\]
By an argument similar to section 4 of [A], there exists smooth functions \(A_i, R \) and \(B_i, R \) and constant \(c_i > 0 \) such that \(c_i \leq A_i, R \leq mC_i^{m-1} + 1, 0 \leq B_i, R \leq C_i^{q-1} + 1, B_i, R / 2A_i, R \leq (C_i^{q-1} / 2m) + 1 = C_2, B_i, R / A_i, R \leq (C_i^{q-1} / m) + 1 = C_3, (A_i, R - A) / A_i^{1/2} \rightarrow 0 \) and \(B_i, R - B \rightarrow 0 \) in \(L^2(B_R(0) \times (0, 1)) \) as \(R \rightarrow 0 \) for all \(R > 0 \).

For any \(R_0 > 2, R > R_0 + 1, \lambda > C_2, \theta \in C_0^\infty(B_{R_0}(0)), 0 \leq \theta \leq 1 \), let \(\eta_i, R \) be the solution of

\[
\begin{aligned}
\eta_t + A_i, R \Delta \eta + B_i, R \eta_x, - \lambda \eta &= 0 & &\text{for } (x, s) \in B_R(0) \times (0, t), \\
\eta(x, s) &= 0 & &\text{for } (x, s) \in \partial B_R(0) \times (0, t), \\
\eta(x, t) &= \theta(x) & &\text{for } x \in B_R(0).
\end{aligned}
\]

Since \(0 \leq \theta \leq 1 \), by the maximum principle \(0 \leq \eta_i, R \leq 1 \). By Lemma 4.1 of [A], we have

\[
\int_0^t \int_{B_R(0)} A_i, R(\Delta \eta_i, R)^2 \, dx \, dt + 2(\lambda - C_2) \int_0^t \int_{B_R(0)} |\nabla \eta_i, R|^2 \, dx \, dt \\
\leq \int_{B_R(0)} |\nabla \theta|^2 \, dx.
\]

By the same argument as the proof of Theorem 2.1 (ii) of [PV], we see that for any \(\beta > 0 \), the function

\[
g(x, s) = e^{h(s)} \left(\frac{1 + R_0^2}{1 + |x|^2} \right)^\beta
\]

where \(h(s) = C'(t - s), C' = 4\beta(\beta + 1)(mC_i^{m-1} + 1) + \beta(C_i^{q-1} + 1) \), satisfies

\[
\begin{aligned}
g_s + A_i, R \Delta g + B_i, R g_x, - \lambda g &< 0, & &\text{for } (x, s) \in B_R(0) \times (0, t), \\
g(x, s) \geq \eta_i, R(x, s), & &\text{for } (x, s) \in B_R(0) \times \{t\} \cup \partial B_R(0) \times (0, t).
\end{aligned}
\]

Hence by the maximum principle [LSU], \(g \geq \eta_i, R \) in \(B_R(0) \times (0, t) \). We next consider the function

\[
g^*(x, s) = a e^{h(s)} \Gamma(|x|), \quad R - \alpha \leq r \leq R, 0 \leq s \leq t,
\]

where \(\alpha = 1/2(C_3 + n - 1), \Gamma(r) = (R - r) - C_3(R - r)^2 \) and

\[
a = (1 + R_0^2)^\beta / \{\Gamma(R - \alpha)(1 + (R - \alpha)^2)^\beta\}.
\]

Then \(g^* \geq 0, g^*_s = h'(s)g^* \leq 0 \) and

\[
\begin{aligned}
\Delta g^* + (B_i, R / A_i, R) g^*_x, & \leq a e^{h(s)} \left(\Gamma''(r) + \frac{n - 1}{r} \Gamma'(r) + C_3 |\Gamma'(r)| \right) \\
& \leq a e^{h(s)} \left(-2C_3 + \frac{n - 1}{r} (-1 + 2C_3(R - r)) + C_3(1 + 2C_3(R - r)) \right) \\
& \leq aC_3 e^{h(s)} (-1 + 2(C_3 + n - 1)(R - r)) \\
& \leq 0
\end{aligned}
\]

for all \(R - \alpha < r < R, 0 < s < t \) since \(R - \alpha \geq R_0 \geq 2 \). Hence \(g^* \) satisfies

\[
g^*_s + A_i, R \Delta g^* + B_i, R g^*_x, - \lambda g^* < 0, \quad \text{for } (x, s) \in B_R(0) \setminus B_{R-\alpha}(0) \times (0, t)
\]
with \(g^*(x, s) \geq \eta_i, R(x, s) \) for all
\[(x, s) \in B_R(0) \setminus B_{R-\alpha}(0) \times \{t\} \cup (\partial B_R(0) \cup \partial B_{R-\alpha}(0)) \times (0, t]. \]

By the maximum principle, \(0 \leq \eta_i, R \leq g^* \) in \(B_R(0) \setminus B_{R-\alpha}(0) \times (0, t) \). Since \(g^* \equiv \eta_i, R \equiv 0 \) on \(\partial B_R(0) \times [0, t] \),
\[
(1.4) \quad \|\partial \eta_i, R / \partial N\|_{L^\infty(\partial B_R(0) \times (0, t))} \leq \|\partial g^*/\partial N\|_{L^\infty(\partial B_R(0) \times (0, t))} \leq CR^{-2\beta}.
\]
Putting \(\eta = \eta_i, R \) in (1.2), we get by (1.3) and (1.4),
\[
(1.5) \quad \int_{B_R(0)} (u_1^{(q)} - u_2^{(q)})(x, t) \theta(x) dx
\]
for all \(\theta \in C_0^\infty(B_R(0)) \), \(0 < \theta < 1 \), \(0 < t < 1 \). Choose now \(\beta = n/2 \) and let first \(i \to \infty \) and then \(R \to \infty \), \(R \to C_2 \) in (1.5), we get
\[
\int_{R^n} (u_1^{(q)} - u_2^{(q)})(x, t) \theta(x) dx \leq \int_{R^n} (f_1 - f_2)_+ dx + C_2 \int_{R^n} (u_1^{(q)} - u_2^{(q)})_+ dx \quad \forall 0 < t < 1.
\]
for all \(\theta \in C_0^\infty(B_R(0)) \), \(0 \leq \theta \leq 1 \), \(R_0 > 2 \). Putting \(\theta = \chi_{\{u_1^{(q)} \geq u_2^{(q)}\} \cap B_R(0)-0} * \rho_\epsilon \) into the above inequality and letting first \(\epsilon \to 0 \) and then \(R_0 \to \infty \), we get
\[
\int_{R^n} (u_1^{(q)} - u_2^{(q)})_+(x, t) dx \leq \int_{R^n} (f_1 - f_2)_+ dx + C_2 \int_{R^n} (u_1^{(q)} - u_2^{(q)})_+ dx \quad \forall 0 < t < 1.
\]
(i) then follows from the Gronwall's inequality. Similarly,
\[
\int_{R^n} (u_1^{(q)} - u_2^{(q)})_-(x, t) dx \leq e^{C_2 t} \int_{R^n} (f_1 - f_2)_- dx \quad \forall 0 < t < 1.
\]
By combining the above inequality with (i), we get (ii).

Corollary 1.2. If \(u_1^{(q)} \) is a subsolution and \(u_2^{(q)} \) is a supersolution of (1.1) in \(Q = D \times (0, 1) \) where \(D = (-\infty, R_0) \times R^{n-1} \) for some \(R_0 \in R \) (or \(D = [R_0, R_1] \times R^{n-1} \) for some \(R_0, R_1 \in R \), \(R_0 < R_1 \)) with \(u_1^{(q)} \), \(u_2^{(q)} \) in \(L^\infty([0, 1); L^1(D)) \cap L^\infty(D \times (0, 1)) \cap C(D \times (0, 1)) \) with initial values \(u_1^{(q)}(x, 0), u_2^{(q)}(x, 0) \) and boundary values satisfying
\[
u^{(q)}(x, t) \leq u^{(q)}(x, t) \quad \forall (x, t) \in \partial \rho Q
\]
where $\partial_p Q = \{ R_0 \} \times R^{n-1} \times (0, 1) \cup (-\infty, R_0) \times R^{n-1} \times \{ 0 \} \) (respectively $\partial_p Q = \{ R_0, R_1 \} \times R^{n-1} \times (0, 1) \cup [R_0, R_1] \times R^{n-1} \times \{ 0 \} \), then
\[
\begin{align*}
u_p(q)(x, t) &\leq u_2(q)(x, t) \quad \forall (x, t) \in Q
\end{align*}
\]
Proof. The proof is the same as the proof of Theorem 1.1.

Theorem 1.3. The equation
\[
\begin{align*}
\frac{\partial u}{\partial t} &= \Delta u + (u^a/q) x_i, \quad u \geq 0, \quad (x, t) \in R^n \times (0, 1), \\
u(x, 0) &= f(x) \geq 0, \quad f \in L^1(R^n) \cap L^\infty(R^n),
\end{align*}
\]
has a unique solution $u(q) \in L^\infty([0, 1); L^1(R^n)) \cap L^\infty(R^n \times (0, 1)) \cap C(R^n \times (0, 1))$ with
\[
\begin{align*}
\int u(q)(x, t)dx &= \int f dx \quad \forall 0 < t < 1, \\
\|u(q)\|_{L^\infty(R^n \times (0, 1))} &\leq \|f\|_{L^\infty(R^n)}.
\end{align*}
\]
Proof. The proof is similar to that of [ERV] and [DK]. Let $\psi \in C_0^\infty(R^n)$, $0 \leq \psi \leq 1$, be such that $\psi(x) \equiv 1$ for all $|x| \leq 1/2$ and $\psi \equiv 0$ for all $|x| \geq 1$. For any $\epsilon > 0, 0 < \epsilon < 1, R > 0$, let $f_{\epsilon,R}(x) = f \ast \rho(x) \cdot \psi(x/R) + \epsilon$ and let $a_\epsilon(s), b_\epsilon(s) \in C^\infty(R)$ be such that $a_\epsilon(s), b_\epsilon(s) \geq 0,$
\[
\begin{align*}
a_\epsilon(s) &= \begin{cases}
ms & \text{for } s \leq 0, \\
m(\|f\|_{L^\infty(R^n)} + 2)^{m-1} & \text{for } s \geq 0,
\end{cases} \\
b_\epsilon(s) &= \begin{cases}
s^{q-1} & \text{for } s \leq 0, \\
(e/2)^{q-1} & \text{for } s \geq 0.
\end{cases}
\end{align*}
\]
By standard parabolic theory [LSU], there exists a unique solution $u_{\epsilon,R}$ to the equation
\[
\begin{align*}
\frac{\partial u}{\partial t} &= div(a_\epsilon(u) \nabla u) - b_\epsilon(u) u x_i, \quad \forall (x, t) \in B_R(0) \times (0, 1), \\
u(x, t) &= \epsilon \quad \forall (x, t) \in \partial B_R(0) \times (0, 1), \\
u(x, 0) &= f_{\epsilon,R}(x), \quad \forall x \in B_R(0).
\end{align*}
\]
Since $\epsilon \leq f_{\epsilon,R} \leq \|f\|_{L^\infty(R^n)} + \epsilon$, by the maximum principle,
\[
\epsilon \leq u_{\epsilon,R} \leq \|f\|_{L^\infty(R^n)} + \epsilon.
\]
Hence $a_\epsilon(u_{\epsilon,R}) = m u_{\epsilon,R}^{m-1}$, $b_\epsilon(u_{\epsilon,R}) = u_{\epsilon,R}^{q-1}$. Since (1.3) is a nondegenerate parabolic equation, by Schauder's estimate [LSU], $u_{\epsilon,R} \in C^\infty(B_R(0) \times (0, 1))$. Thus $u_{\epsilon,R}$ satisfies (1.1) in $B_R(0) \times (0, 1)$. Since $u_{\epsilon,R}$ is uniformly bounded by $\|f\|_{L^\infty(R^n)} + 1$, by the result of P. Sacks [S1], $\{u_{\epsilon,R}\}_{R>0}$ has a convergent subsequent $\{u_{\epsilon,R}\}_{j=1}^{\infty}$, $R_j \rightarrow \infty$ as $j \rightarrow 0$, such that $\{u_{\epsilon,R}\}_{j=1}^{\infty}$ converges uniformly on compact subsets of $R^n \times (0, 1)$. Let $u_{\epsilon,R} = \lim_{j \rightarrow \infty} u_{\epsilon,R}$. Then $u_{\epsilon,R} \in C(R^n \times (0, 1))$ and
\[
\epsilon \leq u_{\epsilon,R} \leq \|f\|_{L^\infty(R^n)} + \epsilon.
\]
Putting \(u = u^{(q)}_{e,R_j} \) in (1.1) and letting \(j \to 0 \), we see that \(u^{(q)}_e \) satisfies (1.1) in \(\mathbb{R}^n \times (0, 1) \) with \(u^{(q)}_e(x, 0) = f \ast \rho(x) + \varepsilon \). Thus \(u^{(q)}_e \in C^\infty(\mathbb{R}^n \times (0, 1)) \) by (1.11) and Schauder’s estimates. Since \(\|u^{(q)}_e\|_{L^\infty(\mathbb{R}^n \times (0, 1))} \leq \|f\|_{L^\infty(\mathbb{R}^n)} + \varepsilon \), by [S1], \(\{u^{(q)}_e\}_{e>0} \) has a convergent subsequence \(\{u^{(q)}_{e_i}\}_{i=1}^\infty \), \(e_i \to 0 \) as \(i \to 0 \), such that \(\{u^{(q)}_{e_i}\}_{i=1}^\infty \) converges uniformly on compact subsets of \(\mathbb{R}^n \times (0, 1) \).

Let \(u^{(q)} = \lim_{i \to \infty} u^{(q)}_{e_i} \). Then \(u^{(q)} \in C(\mathbb{R}^n \times (0, 1)) \).

Putting \(u = u^{(q)}_e \) in (1.1) and letting \(i \to 0 \), we see that \(u^{(q)} \) satisfies (1.1) in \(\mathbb{R}^n \times (0, 1) \). Moreover,

\[
\int_{\mathbb{R}^n} u^{(q)}_{e,R_j}(x, t)\eta(x)dx - \int_{\mathbb{R}^R} \eta(x)dx
\]

\[
= \left| \int_{0}^{t} \int_{\mathbb{R}^n} \left(\Delta u^{(q)}_{e,R_j} \frac{u^{(q)}_{e,R_j}}{q} \right) \eta(x)dxdt \right|
\]

\[
= \left| \int_{0}^{t} \int_{\mathbb{R}^n} \left(\Delta u^{(q)}_{e,R_j} \frac{u^{(q)}_{e,R_j}}{q} \right) \eta(x)dxdt \right|
\]

\[
\leq \left(\|f\|_{L^\infty(\mathbb{R}^n)} + 1 \right)^m \|\Delta \eta\|_{L^1(\mathbb{R}^n)} t + \frac{\left(\|f\|_{L^\infty(\mathbb{R}^n)} + 1 \right)^q}{q} \|\eta_i\|_{L^1(\mathbb{R}^n)} t
\]

for all \(\eta \in C^\infty(\mathbb{R}^n) \). Letting first \(j \to 0 \) and then \(e = e_i \to 0 \), \(t \to 0 \), we get

\[
\lim_{t \to 0} \int_{\mathbb{R}^n} u^{(q)}(x, t)\eta(x)dx = \int_{\mathbb{R}^n} f\eta(x)dx \quad \forall \eta \in C^\infty(\mathbb{R}^n).
\]

Hence \(u^{(q)} \) has initial trace \(f \) and \(\|u^{(q)}\|_{L^\infty(\mathbb{R}^n \times (0, 1))} \leq \|f\|_{L^\infty(\mathbb{R}^n)} \) by (1.11).

On the other hand, since \(u^{(q)}_e \) satisfies (1.1) in \(\mathbb{R}^n \times (0, 1) \),

\[
\int_{\mathbb{R}^n} u^{(q)}_{e,R_j}(x, t)\eta(x, t)dx = \int_{\mathbb{R}^n} \left(f \ast \rho(x) + \varepsilon \right)\eta(x, 0)dx
\]

\[
+ \int_{0}^{t} \int_{\partial B_R(0)} u^{(q)}_e(\eta_t + A_\varepsilon \Delta \eta + B_\varepsilon \eta_{x_1})dxd\tau
\]

\[
- \int_{0}^{t} \int_{\partial B_R(0)} u^{(q)}_e \frac{\partial \eta}{\partial N} d\sigma d\tau
\]

for all \(0 < t < 1 \), \(\eta \in C^\infty(\overline{B_R(0)} \times [0, t]) \), \(R > 0 \) such that \(\eta \equiv 0 \) on \(\partial B_R(0) \times [0, t] \) where \(A_\varepsilon = u^{(q)}_e m^{m-1} \), \(B_\varepsilon = u^{(q)}_e m^{1/q} \).

For any \(R_0 > 2 \), \(R > R_0 + 1 \), \(\theta \in C^\infty(B_{R_0}(0)) \), \(0 \leq \theta \leq 1 \), \(\varepsilon \equiv 1 \) for \(|x| \leq R_0 - 1 \), let \(\eta_{e,R} \) be the solution of

\[
\begin{cases}
\eta_\varepsilon + A_\varepsilon \Delta \eta + B_\varepsilon \eta_{x_1} = 0 & \text{for } (x, s) \in B_R(0) \times (0, t), \\
\eta(x, s) = 0 & \text{for } (x, s) \in \partial B_R(0) \times (0, t), \\
\eta(x, t) = \theta(x) & \text{for } x \in B_R(0).
\end{cases}
\]

By an argument similar to the proof of Theorem 1.1, we have \(0 \leq \eta_{e,R} \leq 1 \),

\[
\eta_{e,R}(x, s) \leq e^{h(s)} \left(\frac{1 + R_0^2}{1 + |x|^2} \right)^n \forall 0 \leq s \leq t,
\]
where \(h(s) = C'(t-s), \) \(C' = 4n(n+1)(b^m_1+1)+n(b^q_1+1), \) \(b_1 = \|f\|_{L^\infty(R^n)} + 1, \) and
\[
\|\partial \eta_{e,R}/\partial N\|_{L^\infty(\partial B_R(0) \times (0,t))} \leq CR^{-2n}
\]
for some constant \(C > 0 \) depending only on \(R_0 \) and \(b_1 \). Putting \(\eta = \eta_{e,R} \) into (1.13), we get
\[
\int_{B_R(0)} u^{(e)}_e \theta(x) dx \leq \int f dx + C'R_0 R^{-n-1} + \varepsilon C_R_0
\]
for some constant \(C_{R_0}, C'_R > 0 \) depending only on \(R_0 \) and \(b_1 \). Letting \(R \to \infty, \varepsilon = \varepsilon_i \to 0, \)
\[
\int_{|x| \leq R_0-1} u^{(e)}_e(x, t) dx \leq \int_{R^n} u^{(e)}_e(x, t) \theta(x) dx \leq \int f dx
\]
for all \(0 < t < 1. \) Letting \(R_0 \to \infty, \)
\[
\int_{R^n} u^{(e)}_e(x, t) dx \leq \int f dx \forall 0 < t < 1.
\]
Hence \(u^{(e)}_e \in L^\infty((0, 1); L^1(R^n)) \cap L^\infty(R^n \times (0, 1)) \cap C(R^n \times (0, 1)) \) and satisfies (1.8). It remains to show (1.7). Since
\[
(1.15) \Rightarrow \int_0^1 \int_{R^n} u^{(e)}_e(x, \tau) dx d\tau \leq \int_{R^n} f dx
\]
\[
\Rightarrow \int_0^1 \int_{R/2 \leq |x| \leq R} u^{(e)}_e(x, \tau) dx d\tau \to 0 \quad \text{as} \quad R \to \infty,
\]
putting \(\eta(x) = \psi(x/R), \) \(R > 0, \) in (1.12), we have
\[
\left| \int_{R^n} u^{(e)}_{e,R}(x, t) \psi(x/R) dx - \int_{R^n} f_{e,R}(x) \psi(x/R) dx \right| \\
\leq \frac{(\|f\|_{L^\infty(R^n)} + 1)^m-1}{R^2} \|\Delta \psi\|_{L^\infty(R^n)} \int_0^t \int_{R/2 \leq |x| \leq R} u^{(e)}_{e,R}(x, \tau) dx d\tau \\
+ \frac{(\|f\|_{L^\infty(R^n)} + 1)^q-1}{qR} \|\psi_{x_1}\|_{L^\infty(R^n)} \int_0^t \int_{R/2 \leq |x| \leq R} u^{(e)}_{e,R}(x, \tau) dx d\tau.
\]
By letting first \(j \to \infty \) and then \(\varepsilon = \varepsilon_i \to 0, \) \(R \to \infty, \) in the above inequality, we get (1.7). Since uniqueness of solution of (1.6) follows from Theorem 1.1. This completes the proof of the theorem.

Theorem 1.4. Let \(u^{(1)}_e, u^{(2)}_e, f_1, f_2 \) be as in Theorem 1.1. Then
\[
\int_{R^n} |u^{(1)}_e - u^{(2)}_e|(x, t) dx \leq \int_{R^n} |f_1 - f_2| dx \forall 0 < t < 1.
\]

Proof. By Theorem 1.1 and the proof of Theorem 1.3, there exist solutions \(u^{(1)}_{e, \varepsilon}, u^{(2)}_{e, \varepsilon} \in C^\infty(R^n \times (0, 1)) \cap L^\infty(R^n \times (0, 1)), \) \(0 < \varepsilon < 1, \) of (1.6) with initial values \(u^{(1)}_{e, \varepsilon}(x, 0) = f_1 * \rho_\varepsilon + \varepsilon, \) \(u^{(2)}_{e, \varepsilon}(x, 0) = f_2 * \rho_\varepsilon + \varepsilon \) respectively such that \(u^{(1)}_{e, \varepsilon} \) and \(u^{(2)}_{e, \varepsilon} \) converges uniformly to \(u^{(1)}_e \) and \(u^{(2)}_e \) respectively on compact subsets of \(R^n \times (0, 1) \) as \(\varepsilon \to 0. \)
By a proof similar to the proof of (1.14), we have
\[
\int_{B_R(0)} (u_1^{(q)} - u_2^{(q)}) (x, t) \theta(x) dx \leq \int_{R^n} (f_1 - f_2)_+ dx + C_{R_0} R^{-n} + \varepsilon C_{R_0}
\]
for all \(\theta \in C_0^\infty(B_{R_0}(0)) \), \(R_0 > 2 \), \(R > R_0 + 1 \), \(0 < t < 1 \) where \(C_{R_0} \) and \(C_{R_0}^\varepsilon > 0 \) are constants depending only on \(R_0 \), \(\|u_1^{(q)}\|_{L^\infty(R^n)} \) and \(\|u_2^{(q)}\|_{L^\infty(R^n)} \).

Letting \(R \to \infty \), \(\varepsilon \to 0 \), we get
\[
\int_{R^n} (u_1^{(q)} - u_2^{(q)})(x, t) \theta(x) dx \leq \int_{R^n} (f_1 - f_2)_+ dx
\]
for all \(\theta \in C_0^\infty(B_{R_0}(0)) \), \(R_0 > 2 \), \(0 < t < 1 \). Putting \(\theta = \chi_{\{u_1^{(q)} > u_2^{(q)}\}} \) \(\rho_\varepsilon \) and letting first \(\varepsilon \to 0 \) and then \(R_0 \to \infty \),
\[
\int_{R^n} (u_1^{(q)} - u_2^{(q)})_+(x, t) dx \leq \int_{R^n} (f_1 - f_2)_+ dx \quad \forall 0 < t < 1.
\]

Similarly,
\[
\int_{R^n} (u_1^{(q)} - u_2^{(q)})_-(x, t) dx \leq \int_{R^n} (f_1 - f_2)_- dx \quad \forall 0 < t < 1.
\]

Combining the above two inequalities the theorem follows.

Lemma 1.5. If \(f \in C_0^1(R^n) \) and \(f_\varepsilon = f + \varepsilon, \ 0 < \varepsilon < 1 \), then (1.1) has a unique solution \(u_\varepsilon^{(q)} \in C_0^\infty(R^n \times (0, 1)) \cap C^1(R^n \times [0, 1)) \) in \(R^n \times (0, 1) \) with \(u_\varepsilon^{(q)}(x, 0) = f_\varepsilon(x) \) such that \(u_\varepsilon^{(q)} \) converges uniformly on compact subsets of \(R^n \times (0, 1) \) to the solution \(u^{(q)} \) of (1.6) with \(u^{(q)}(x, 0) = f(x) \) as \(\varepsilon \to 0 \).

Moreover
\[
\|u_\varepsilon^{(q)}\|_{L^\infty(R^n)} \leq \|f_\varepsilon\|_{L^\infty(R^n)} \quad \forall k = 1, 2, \ldots, n.
\]

Proof. By Theorem 1.4 and an argument similar to the proof of Theorem 1.3, for any \(0 < \varepsilon < 1 \) there exists a unique solution \(u_\varepsilon^{(q)} \in C_0^\infty(R^n \times (0, 1)) \cap C^1(R^n \times [0, 1)) \) to (1.1) in \(R^n \times (0, 1) \) with \(u_\varepsilon^{(q)}(x, 0) = f(x) + \varepsilon \) and
\[
(1.16) \quad \varepsilon \leq u_\varepsilon^{(q)} \leq \|f\|_{L^\infty(R^n)} + \varepsilon
\]
such that \(u_\varepsilon^{(q)} \) converges uniformly on compact subsets of \(R^n \times (0, 1) \) to the solution \(u^{(q)} \) of (1.6) with \(u^{(q)}(x, 0) = f(x) \) as \(\varepsilon \to 0 \).

Since \(u_\varepsilon^{(q)} \in C_0^\infty(R^n \times (0, 1)) \cap C^1(R^n \times [0, 1)) \), differentiating (1.1) with respect to \(x_k \) and writing \(z = u_\varepsilon^{(q)}(x_k) \), we get
\[
\begin{cases}
z_t = \Delta(mu_\varepsilon^{(q)m-1}z) + (u_\varepsilon^{(q)q-1}z)_{x_1}, & (x, t) \in R^n \times (0, 1), \\
z(x, 0) = f_\varepsilon(x), & x \in R^n,
\end{cases}
\]
for all \(k = 1, 2, \ldots, n \). Since the above equation is nondegenerate by (1.16), by the maximum principle,
\[
\|z\|_{L^\infty(R^n)} \leq \|f_\varepsilon\|_{L^\infty(R^n)} \quad \forall k = 1, 2, \ldots, n
\]
and the lemma follows.

Lemma 1.6. Let \(0 \leq f \leq M \) with \(\text{supp} f \subset B_{R_1}(0) \) for some \(R_1 > 0 \). Then there exists \(R' > 0 \) depending only on \(m, R_1, M \) and is independent of \(q > m + 1 \) such that
\[
u^{(q)}(x, t) = 0 \quad \forall x = (x_1, \ldots, x_n) \in R^n, \ x_i \leq -R', \ 0 \leq t < 1, \ q > m + 1,
\]
and

\[0 \leq u^{(q)}(x, t) \leq \left(\frac{x_1 + R' + 1}{t + (1/M^{q-1})} \right)^{1/q-1} \leq \left(\frac{x_1 + R' + 1}{t} \right)^{1/q-1} \]

for all \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \ x_1 \geq -R', \ 0 < t < 1, \ q > m + 1. \)

Proof. Let

\[w(x_1, t) = \frac{1}{(t + t_0)^{1/m+1}} \left(a^2 - C_1 \left(\frac{x_1}{(t + t_0)^{1/m+1}} \right)^2 \right)^{1/m-1}, \quad x_1 \in \mathbb{R}, \ t \geq 0, \]

be the Barenblatt solution for the porous medium equation \(\frac{w_t}{(\alpha x_1)^q} = \left(\frac{\partial w}{\partial x_1} \right)^q \) ([B], [HP]) where \(C_1 = \frac{m-1}{2m} \left(\frac{1}{(m+1)} \right), \ t_0 = \min \left(1, \left(\frac{4CR_1^2}{2m-1/M} \right)^{(m+1)/2} \right) \) and

\[a = \left(C_1 (2R_1/t_0)^{1/m+1} \right)^{1/2} + \left(M t_0^{1/m+1} \right)^{m-1}. \]

Then \(w \) is a supersolution of (1.1) in \((-\infty, 0] \times \mathbb{R}^{n-1} \times (0, 1) \) with

\[u^{(q)}(x + x_0) = f(x + x_0) \leq M \leq w(x_1, 0) \]

for all \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \ x_1 \leq 0 \) where \(x_0 = (R_1, 0, \ldots, 0) \) and

\[w(0, t) \geq \frac{1}{(1 + t_0)^{1/m+1}} a^{2/m-1} \]

\[\geq \frac{1}{2^{1/m+1}} C_1 \left(\frac{2R_1}{t_0} \right)^{2/m-1} \]

\[\geq \frac{1}{2^{1/m+1}} \left(\frac{4R_1^2C_1}{(2^{1/m+1} M)^{m-1}} \right)^{1/m-1} \]

\[= M \geq u(x_0, t) \]

for all \(0 < t < 1 \) by (1.8). Hence by applying the maximum principle (Corollary 1.2) to the functions \(u^{(q)}(x + x_0, \cdot) \) and \(w \) in the region \((-\infty, 0] \times \mathbb{R}^{n-1} \times (0, 1) \), we get

\[u^{(q)}(x + x_0, t) \leq w(x_1, t) \quad \forall x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \ x_1 \leq 0, \ 0 \leq t < 1. \]

Now for each \(0 < t < 1, \ \text{supp} \ w(x_1, t) \subset B_{R_t}(0) \) where

\[R_t = \frac{a}{C_1^{1/2}} (t + t_0)^{1/m+1} \leq \frac{2a}{C_1^{1/2}} \quad (= R_2 \text{ say}). \]

Hence

\[u^{(q)}(x + x_0, t) \leq w(x_1, t) = 0 \quad \forall x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \ x_1 \leq -R_2, \ 0 \leq t < 1, \]

\[\Rightarrow u^{(q)}(x, t) = 0 \quad \forall x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \ x_1 \leq -R', \ 0 \leq t < 1, \]

\[q > m + 1, \]

(1.17)

where \(R' = \max(R_2 - R_1, 0) \geq 0. \)
We next observe that

\[
\tilde{w}(x_1, t) = \left(\frac{x_1 + R' + 1}{t + (1/M^{q-1})} \right)^{1/q-1}, \quad q > m + 1,
\]
is a supersolution of (1.1) in \([-R', R_3] \times \mathbb{R}^{n-1} \times (0, \infty)\) with

\[
\begin{align*}
&u(q)(x, 0) \leq M \leq \tilde{w}(x_1, 0) \quad \text{for } x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \quad -R' \leq x_1 \leq R_3, \\
u(q)(x, t) \leq M \leq \tilde{w}(x_1, t) \quad \text{for } x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \\
x_1 = -R' \text{ or } x_1 = R_3, \quad 0 \leq t < 1,
\end{align*}
\]
for all \(R_3 > \max(2M^{q-1} - R' + 1, 0)\) by (1.17). Hence by applying Corollary 1.2 to the function \(u(q)\) and \(\tilde{w}\) in the region \([-R', R_3] \times \mathbb{R}^{n-1} \times (0, 1)\), we get

\[
u(q)(x, t) \leq \tilde{w}(x_1, t)
\]
for all \(x = (x_1, \ldots, x_n) \in [-R', R_3] \times \mathbb{R}^{n-1}, \quad 0 \leq t < 1, \quad q > m + 1, \quad R_3 > \max(2M^{q-1} - R' + 1, 0)\). By letting \(R_3 \to \infty\), the lemma follows.

Lemma 1.7. Suppose \(f\) is as in Lemma 1.6. Let \(\Omega \subset \mathbb{R}^n\) be a bounded open set with \(\partial \Omega \in C^2\) and \(\eta \in C^\infty(\mathbb{R}^n \times (0, 1))\). Then

\[
\int_{\tau_1}^{\tau_2} \int_{\Omega} \frac{u(q)}{q} \cdot \eta \, dx \, dt \to 0 \quad \text{as } q \to \infty
\]
for any \(0 < \tau_1 \leq \tau_2 < 1\).

Proof. By Lemma 1.6, there exists a constant \(R' > 0\) such that

\[
u(q)(x, t) \leq \left(\frac{|x_1| + R' + 1}{t} \right)^{1/q-1} \quad \forall x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \quad 0 < t < 1,
\]
and by Theorem 1.3 \(\|u(q)\|_{L^\infty} \leq \|f\|_{L^\infty}\) for all \(q > m + 1\). Hence

\[
\begin{align*}
&\int_{\tau_1}^{\tau_2} \int_{\Omega} \frac{u(q)}{q} \cdot \eta \, dx \, dt = \int_{\tau_1}^{\tau_2} \int_{\Omega} \frac{u(q)^2}{q} \cdot \eta \, dx \, dt \\
&\leq \|\eta\|_{L^\infty} \|f\|_{L^\infty}^2 \int_{\tau_1}^{\tau_2} \int_{\Omega} \left(\frac{|x_1| + R' + 1}{t} \right)^{q-2/q-1} \, dx \, dt \\
&\leq \|\eta\|_{L^\infty} \|f\|_{L^\infty}^2 \left(\frac{R'' + R' + 1}{\tau_1} \right)^{q-2/q-1} \to 0
\end{align*}
\]
as \(q \to \infty\) where \(R'' = \sup\{|x_1| : x = (x_1, \ldots, x_n) \in \Omega| < \infty\)).

Lemma 1.8. Let \(f \in C_0(\mathbb{R}^n)\) and let \(p(q)(x, t) = \int_0^t \frac{u(q)(x, \tau)}{q} \, d\tau\). Then \(\{p(q)\}_{q>m+1}\) is uniformly bounded on compact subsets of \(\mathbb{R}^n \times [0, 1)\). For any sequence \(\{p(i)\}_{i=1}^\infty, \quad q_i \to \infty\) as \(i \to \infty\), of \(\{p(q)\}_{q>m+1}\), there exists a subsequence \(\{p(q)\}_{i=1}^\infty, \quad q_i \to \infty\) of \(\{p(q)\}_{q=1}^\infty\), a sequence of functions \(\{p_j\}_{j=1}^\infty \subset L^\infty_{\text{loc}}(\mathbb{R}^n)\), \(\tilde{g} \in L^\infty_{\text{loc}}(\mathbb{R}^n)\), \(p_j, \tilde{g} \geq 0\), and a sequence \(\{\varepsilon_j\}_{j=1}^\infty \subset \mathcal{R}, \quad \varepsilon_j \to 0\) as \(j \to \infty\), such that

\[
(1.18)
\]
\[
\begin{align*}
&p^{(q)}(\cdot, \varepsilon_j) \to p_j(\cdot) \quad \text{weakly in } (L^\infty(K))^* \quad \text{as } i \to \infty, \quad \forall j = 1, 2, \ldots, \\
p_j(\cdot) \to \tilde{g}(\cdot) \quad \text{weakly in } (L^\infty(K))^* \quad \text{as } j \to \infty
\end{align*}
\]
for any compact subset \(K \subset \mathbb{R}^n\).
Proof. By Theorem 1.3, \(\|u^{(q)}\|_{L^\infty(R^n)} \leq \|f\|_{L^\infty(R^n)} \) for all \(q > m + 1 \) and by Lemma 1.6 there exists \(R' > 0 \) such that

\[
0 \leq u^{(q)}(x, \tau) \leq \left(\frac{|x_1| + R' + 1}{\tau} \right)^{1/(q-1)} \quad \forall x = (x_1, x_2, \ldots, x_n) \in R^n, \quad 0 < \tau < 1, \ q > m + 1.
\]

Hence

\[
0 \leq p^{(q)}(x, t) = \int_0^t \frac{u^{(q)}(x, t) - u^{(q)}(x, t)}{q} \, dt \leq \frac{\|f\|_{L^\infty(R^n)}^2}{q} \int_0^t \left(\frac{|x_1| + R' + 1}{\tau} \right)^{q-2/q-1} \, dt \leq \frac{q-1}{q} \|f\|_{L^\infty(R^n)}^2 (|x_1| + R' + 1)^{q-2/q-1} t^{1/q-1}
\]

for all \(x = (x_1, x_2, \ldots, x_n) \in R^n, \ 0 < t < 1, \ q > m + 1 \). Thus \(\{p^{(q)}\}_{q>m+1} \) is uniformly bounded on compact subsets of \(R^n \times [0, 1) \). So any sequence \(\{p^{(q_i)}\}_{i=1}^\infty \) of \(\{p^{(q)}\}_{q>m+1} \) will have a subsequence \(\{p^{(q_{i,i})}\}_{i=1}^\infty \) such that \(\{p^{(q_{i,i})}\}_{i=1}^\infty \) converges weakly in \((L^\infty(K))^* \) for any compact subset \(K \subset R^n \).

Let \(p_1(\cdot) = \lim_{i \to \infty} p^{(q_{i,i})}(\cdot, 1/2) \). Then \(\{p^{(q_{i,i})}\}_{i=1}^\infty \) has a subsequence \(\{p^{(q_{i,i})}\}_{i=1}^\infty \) such that \(p^{(q_{i,i})}(x, 1/2) \to p_1(x) \) a.e. \(x \in R^n \) as \(i \to \infty \). Without loss of generality we may assume \(p^{(q_{i,i})}(x, 1/2) \to p_1(x) \) a.e. \(x \in R^n \) as \(i \to \infty \). We may also assume that \(q_1 < q_{1,1} \). Since \(\{p^{(q_{i,i})}\}_{i=1}^\infty \) is uniformly bounded on compact subsets of \(R^n \), \(\{p^{(q_{i,i})}\}_{i=1}^\infty \) has a subsequence \(\{p^{(q_{i,i})}\}_{i=1}^\infty \) converging weakly in \((L^\infty(K))^* \) for any compact set \(K \subset R^n \). Let \(p_2(\cdot) = \lim_{i \to \infty} p^{(q_{2,i})}(\cdot, 1/3) \). We may assume without loss of generality that \(p^{(q_{2,i})}(x, 1/3) \to p_2(x) \) a.e. \(x \in R^n \) as \(i \to \infty \) and \(q_1,1 < q_{2,1} \).

Repeating the argument, for each \(j = 2, 3, \ldots \), we can find a subsequence \(\{p^{(q_{j,i})}(x, 1/(j+1))\}_{i=1}^\infty \) of \(\{p^{(q_{j-1,i})}(x, 1/(j+1))\}_{i=1}^\infty \) with \(q_{j,1} > q_{j-1,1} \) and a function \(p_j \in L^\infty_{\text{loc}}(R^n) \) such that \(p^{(q_{j,i})}(x, 1/(j+1)) \to p_j(x) \) weakly in \((L^\infty(K))^* \) for every compact set \(K \subset R^n \) as \(i \to \infty \) and \(p^{(q_{j,i})}(x, 1/(j+1)) \to p_j(x) \) a.e. \(x \in R^n \) as \(i \to \infty \).

Let \(q'_j = q_{j,i} \). Then for each \(j = 1, 2, \ldots, \) \(\{p^{(q'_j)}(\cdot, 1/(j+1))\}_{i=1}^\infty \) is a subsequence of \(\{p^{(q_{j,i})}(x, 1/(j+1))\}_{i=1}^\infty \). Hence \(p^{(q'_j)}(x, 1/(j+1)) \to p_j(x) \) weakly in \((L^\infty(K))^* \) for every compact set \(K \subset R^n \) as \(i \to \infty \) and \(p^{(q'_j)}(x, 1/(j+1)) \to p_j(x) \) a.e. \(x \in R^n \) as \(i \to \infty \). Thus \(\{p_j\}_{j=1}^\infty \) is also uniformly bounded on every compact subset of \(R^n \). So there exists a subsequence \(\{p_{j_k}\}_{k=1}^\infty \) of \(\{p_j\}_{j=1}^\infty \) and a function \(\tilde{g} \in L^\infty_{\text{loc}}(R^n) \) such that \(p_{j_k} \to \tilde{g} \) weakly in \((L^\infty(K))^* \) for any compact subset \(K \subset R^n \). Letting \(\epsilon_k = 1/(j_k + 1) \), the lemma follows.

In this section we will first establish some technical lemmas and prove the main theorem (Theorem 2.10) under the assumption that \(f \in C^1_0(R^n) \) (Theorem 2.9). The main theorem will then follow by an approximation argument.
Theorem 2.1. Suppose \(f \in C_0(\mathbb{R}^n) \). For any sequence \(\{u^{(q)}\}_{q=1}^{\infty} \), \(q_i \to \infty \) as \(i \to \infty \), of \(\{u^{(q)}\}_{q>m+1} \), there exists a subsequence \(\{u^{(q')}\}_{q=1}^{\infty} \) of \(\{u^{(q)}\}_{q=1}^{\infty} \) and a \(u^{(\infty)} \in C(\mathbb{R}^n \times (0,1)) \), \(0 \leq u^{(\infty)} \leq 1 \), such that \(u^{(q')} \to u^{(\infty)} \) uniformly on compact subsets \(R \times (0,1) \) as \(i \to \infty \). Moreover \(u^{(\infty)} \) satisfies (0.2) with initial trace \(g \in L_1(\mathbb{R}^n) \), \(0 \leq g \leq 1 \), satisfying (0.3) for some function \(\tilde{g} \in L_\infty(\mathbb{R}^n) \), \(\tilde{g} \geq 0 \).

Proof. The proof is a modification of the proof of Theorem 4 of [H1]. We first observe that \(u^{(q)} \) is uniformly bounded by \(\|f\|_{L_\infty} \) by Theorem 1.3 and there exists \(R' > 0 \) such that
\[
0 < u^{(q)}(x,t) < M^1 + R' \quad \forall x = (x_1, x') \in \mathbb{R}^n, \quad 0 < t < 1, \quad q > m + 1,
\]
by Lemma 1.6. If \(\gamma(s) = s^{q/m} q \), then \(\gamma(u^{(q)}m) = \frac{u^{(q)}m}{q} \) and
\[
\gamma'(u^{(q)}m(x,t)) = \frac{1}{q} u^{(q)}m(x,t)^{q-m} \leq \frac{1}{q} \left(\frac{|x_1| + R' + 1}{t} \right)^{q-m/q-1} \leq \frac{1}{q} \left(\frac{|x_1| + R' + 1}{t} \right)^{q-m/q-1} \forall x = (x_1, x') \in \mathbb{R}^n, \quad 0 < t < 1, \quad q > m + 1,
\]
by (2.1). Hence both \(u^{(q)}m \) and \(\gamma'(u^{(q)}m) \) are uniformly bounded on compact subsets of \(\mathbb{R}^n \times (0,1) \) for \(q > m + 1 \). By the result of P. Sacks [S1], \(\{u^{(q)}m\}_{q=m+1}^{\infty} \) is uniformly Hölder continuous on every compact subset of \(\mathbb{R}^n \times (0,1) \). Hence \(\{u^{(q)}m\}_{q=m+1}^{\infty} \) has a convergent subsequence \(\{u^{(q')}\}_{q=1}^{\infty} \) such that \(\{u^{(q')}\}_{q=1}^{\infty} \) converges uniformly on every compact subset of \(\mathbb{R}^n \times (0,1) \). Without loss of generality we may assume that \(\{u^{(q)}\}_{q=1}^{\infty} \) converges uniformly on every compact subset of \(\mathbb{R}^n \times (0,1) \). Let \(u^{(\infty)} = \lim_{i \to \infty} u^{(q)} \). Then \(u^{(\infty)} \in C(\mathbb{R}^n \times (0,1)) \).

Putting \(q = q_i \) and letting \(i \to \infty \) in (2.1), we get \(0 \leq u^{(\infty)} \leq 1 \). Putting \(h(u) = u^{q_i/q_i} \), \(u = u^{(q)} \) in (0.5) and letting \(i \to \infty \) we see that, by Lemma 1.6, \(u^{(\infty)} \) satisfies
\[
\int_{t_1}^{t_2} \int_{\Omega} \left[u^{m} \Delta \eta + u \frac{\partial \eta}{\partial t} \right] dx dt = \int_{t_1}^{t_2} \int_{\partial \Omega} u^{m} \frac{\partial \eta}{\partial N} d\sigma ds + \int_{\Omega} u \eta dx \bigg|_{t_1}^{t_2}
\]
for all bounded open sets \(\Omega \subset \mathbb{R}^n \) with \(\partial \Omega \in C^2 \), \(0 < \tau_1 \leq \tau_2 < 1 \), \(\eta \in C^\infty(\Omega \times [\tau_1, \tau_2]) \), \(\eta = 0 \) on \(\partial \Omega \times [\tau_1, \tau_2] \). Hence \(u^{(\infty)} \) is a solution of the equation \(u_t = \Delta u^m \) in \(\mathbb{R}^n \times (0,1) \). Since \(\|u^{(\infty)}\|_{L_\infty} \leq \|f\|_{L_\infty} \), \(u^{(\infty)} \) has an initial trace \(d\mu \) by [DK] and \(d\mu \) is absolutely continuous with respect to the Lebesgue measure. Hence \(d\mu = g(x)dx \) for some function \(g \geq 0 \). Since \(0 \leq u^{(\infty)} \leq 1 \) and
\[
\lim_{i \to 0} u^{(\infty)}(x,t) = g(x) \quad \text{a.e.} \quad x \in \mathbb{R}^n
\]
by the result of [DFK], \(0 \leq g \leq 1 \). Since
\[
\int_{\mathbb{R}^n} u^{(q)}(x,t)dx = \int_{\mathbb{R}^n} f(x)dx, \quad \forall 0 < t \leq 1, \quad i = 1, 2, \ldots
\]
Letting $i \to \infty$, we get by Fatou's lemma,
\[
\int_{R^n} u^{(\infty)}(x, t) dx \leq \int_{R^n} f(x) dx, \quad \forall 0 < t \leq 1.
\]

Letting $t \to 0$, we get by Fatou's lemma and (2.3),
\[
\int_{R^n} g(x) dx \leq \int_{R^n} f(x) dx.
\]

Hence $g \in L^1(R^n)$. Let $p^{(q_i)}$ be as in Lemma 1.8 and Ω be a bounded open subset of R^n with $\partial \Omega \in C^2$. Then by Lemma 1.8 there exists a constant $C_1 > 0$ such that $\|p^{(q_i)}\|_{L^{\infty}(\Omega \times [0,1])} \leq C_1$ for all $q > m + 1$ and there exists a subsequence $\{p^{(q'_i)}\}_{i=1}^{\infty}$, a sequence of functions $\{p_j\}_{j=1}^{\infty} \subset L^{\infty}_{\text{loc}}(R^n)$, $\bar{g} \in L^{\infty}_{\text{loc}}(R^n)$, $p_j \geq 0$, and a sequence $\{e_j\}_{j=1}^{\infty} \subset R$, $e_j \to 0$ as $j \to \infty$, such that (1.18) holds. Hence for any $0 < \tau_2 < 1$, $\eta \in C_0^\infty(R^n)$,
\[
\begin{align*}
\int_0^{\tau_2} \int_{\Omega} \frac{u^{(q'_i)}q_i}{q_i} \eta_{x_i} dx d\tau \leq \int_{\Omega} \int_0^{\tau_2} \frac{u^{(q'_i)}q_i}{q_i} \eta_{x_i} dx d\tau \\
+ \int_{\Omega} \left(\int_0^{e_j} \frac{u^{(q'_i)}q_i}{q_i}(x, \tau) d\tau \right) \eta_{x_i}(x) dx - \int_{R^n} \bar{g} \eta_{x_i} dx \\
\leq \|\eta_{x_i}\|_{L^{\infty}(R^n)} \int_{\Omega} \int_0^{\tau} \frac{u^{(q'_i)}q_i}{q_i} \eta_{x_i} dx d\tau \\
+ \int_{\Omega} p^{(q'_i)}(x, e_j) \eta_{x_i}(x) dx - \int_{\Omega} p_j(x) \eta_{x_i}(x) dx \\
+ \int_{\Omega} p_j(x) \eta_{x_i}(x) dx - \int_{\Omega} \bar{g}(x) \eta_{x_i}(x) dx.
\end{align*}
\]
Letting first $i \to \infty$ and then $j \to \infty$, we get by Lemma 1.7 and Lemma 1.8,
\[
\limsup_{i \to \infty} \left| \int_0^{\tau_2} \int_{\Omega} \frac{u^{(q'_i)}q_i}{q_i} \eta_{x_i} dx d\tau - \int_{\Omega} \bar{g} \eta_{x_i} dx \right| = 0
\]
(2.4)

Putting $h(u) = \frac{u^{(q'_i)}}{q_i}$, $u = u^{(q_i)}$, in (0.5) and letting $\tau_1 \to 0$, we have
\[
\begin{align*}
\int_0^{\tau_2} \int_{R^n} u^{(q'_i)}q_i \Delta \eta dx d\tau + \int_0^{\tau_2} \int_{R^n} \frac{u^{(q'_i)}q_i}{q_i} \eta_{x_i} dx d\tau \\
= \int_{R^n} u^{(q'_i)}(x, \tau_2) \eta(x) dx - \int_{R^n} f \eta dx
\end{align*}
\]
for all $\eta \in C_0^\infty(R^n)$, $0 < \tau_2 < 1$. Letting $i \to \infty$, we get by (2.4) and Lebesgue dominated convergence theorem,
\[
\begin{align*}
\int_0^{\tau_2} \int_{R^n} u^{(\infty)}q_i \Delta \eta dx d\tau + \int_{R^n} \bar{g} \eta_{x_i} dx d\tau = \int_{R^n} u^{(\infty)}(x, \tau_2) \eta(x) dx - \int_{R^n} f \eta dx
\end{align*}
\]
for all $\eta \in C_0^\infty(R^n)$. Letting $\tau_2 \to 0$,
\[
\int \bar{g} \eta_{x_i} dx = \int g \eta dx - \int f \eta dx \quad \forall \eta \in C_0^\infty(R^n)
\]
\[
\Rightarrow g + \bar{g} \eta_{x_i} = f \quad \text{in } \mathcal{D}'(R^n).
\]
This completes the proof of Theorem 2.1.

We will now let
\[S(g) = \left\{ x_0 \in \mathbb{R}^n : \lim_{h \to 0} \frac{1}{|B_h(0)|} \int_{B_h(x_0)} |g(x) - g(x_0)| dx = 0 \right\}, \]
\[G(u^{(\infty)}, g) = \left\{ x \in \mathbb{R}^n : \lim_{i \to 0} u^{(\infty)}(x, t) = g(x) \right\}. \]

Lemma 2.2. Let \(f, u^{(\infty)}, u^{(q_i)}, g \) be as in Theorem 2.1 and let \(S^* = S(g) \cap G(u^{(\infty)}, g) \cap \{ g < 1 \} \). If \(x_0 \in S^* \) is such that \(g(x_0) \leq \theta < 1 \), then for any \(\theta_1 \in (\theta, 1) \) and \(\delta > 0 \), there exists \(q_0 > m + 1 \), \(e_0 > 0 \), \(0 < e_0 < 1/2 \), such that
\[
\inf_{|x - x_0| \leq \delta} u^{(q_i)}(x, t) < \theta_1 \quad \forall 0 < t \leq e_0, q_i > q_0.
\]

Proof. The proof is similar to the proof of Theorem 3.3 of [CF]. Suppose the lemma is not true. Then there exists \(\theta_1 \in (\theta, 1) \), \(\delta > 0 \), and \(\{ e_i \}_{i=1}^{\infty}, 0 < e_i < 1/2, i = 1, 2, \ldots, e_i \to 0 \) as \(i \to \infty \) and a subsequence \(\{ u^{(q_i')} \}_{i=1}^{\infty} \) of \(\{ u^{(q_i')} \}_{i=1}^{\infty} \) such that
\[
\inf_{|x - x_0| \leq \delta} u^{(q_i')} (x, e_i) > \theta_1.
\]

Let \(\tilde{u}^{(q_i''')} \) be the solution of (1.1) in \(\mathbb{R}^n \times (0, 1) \) with initial value \(\tilde{u}^{(q_i''')} (x, 0) = \theta_1 \chi_{B_\delta(x_0)} \) where \(\chi_{B_\delta(x_0)} \) is the characteristic function of the set \(B_\delta(x_0) \). By Theorem 1.1,
\[
\tilde{u}^{(q_i''')} (x, t) \leq u^{(q_i''')} (x, t + e_i) \quad \forall x \in \mathbb{R}^n, 0 < t \leq 1/2
\]
\[
\Rightarrow \int \int \tilde{u}^{(q_i''')} (x, t) \eta(x, t) dx dt \leq \int \int u^{(q_i''')} (x, t + e_i) \eta(x, t) dx dt
\]
\[
= \int \int u^{(q_i''')} (x, t) \eta(x, t - e_i) dx dt
\]
(2.5)
for all \(\eta \in C_0^\infty (\mathbb{R}^n \times (0, 1/2)) \) and \(e_i \) sufficiently small. By Theorem 2.1, \(\{ \tilde{u}^{(q_i''')} \}_{i=1}^{\infty} \) has a convergent subsequence converging uniformly on compact subsets of \(\mathbb{R}^n \times (0, 1) \). Without loss of generality, we may assume that \(\{ \tilde{u}^{(q_i''')} \}_{i=1}^{\infty} \) converges uniformly on compact subsets of \(\mathbb{R}^n \times (0, 1) \). Let \(\tilde{u}^{(\infty)} = \lim_{i \to \infty} \tilde{u}^{(q_i''')} \). Since \(0 \leq u^{(q_i'')} \leq \theta_1 < 1 \), letting \(i \to \infty \) in (2.5), we get by Lebesgue dominated convergence theorem
\[
\int \int \tilde{u}^{(\infty)} (x, t) \eta(x, t) dx dt \leq \int \int u^{(\infty)} (x, t) \eta(x, t) dx dt
\]
\[
\Rightarrow \tilde{u}^{(\infty)}(x, t) \leq u^{(\infty)}(x, t) \quad \forall x \in \mathbb{R}^n, 0 < t < 1/2
\]
\[
\text{since } \tilde{u}^{(\infty)}, u^{(\infty)} \in C(\mathbb{R}^n \times (0, 1/2))
\]
\[
\Rightarrow \int_{\mathbb{R}^n} \tilde{u}^{(\infty)} (x, t) \eta(x) dx \leq \int_{\mathbb{R}^n} u^{(\infty)} (x, t) \eta(x) dx \quad \forall \eta \in C_0^\infty (\mathbb{R}^n)
\]
\[
\Rightarrow \int_{\mathbb{R}^n} \theta_1 \chi_{B_\delta(x_0)} (x) dx \leq \int_{\mathbb{R}^n} g(x) \eta(x) dx \quad \text{as } t \to 0 \quad \forall \eta \in C_0^\infty (\mathbb{R}^n)
\]
\[
\Rightarrow \theta < \theta_1 \leq g(x_0)
\]
since \(x_0 \in S(g) \). Thus contradiction arise and the lemma follows.
Lemma 2.3. Suppose \(f \in C^1_0(R^n) \). Let \(u^{(\infty)}, u^{(q_i)} \), \(g \) be as in Theorem 2.1 and let \(S^* \) be as in Lemma 2.2. If \(x_0 \in S^* \) is such that \(g(x_0) \leq \theta < 1 \), then for any \(\theta_1 \in (0, 1) \), there exists \(\theta_0 \) depending only on \(\theta \), \(\theta_1 \) and \(\|f_{x_k}\|_{L^\infty(R^n)}, \ k = 1, 2, \ldots, n \), such that

\[
u^{(q_i)}(x, t) \leq \theta_1 \quad \forall x \in B_\delta(x_0), \ 0 < t \leq \theta_0, \ q_i' \geq q_0,
\]

where \(\delta = (\theta_1 - \theta)/4(\sqrt{n} \max_{1 \leq k \leq n} \|f_{x_k}\|_{L^\infty(R^n)} + 1) \).

Proof. The proof is similar to the proof of Theorem 2.4 of [H2]. Let

\[
\delta = (\theta_1 - \theta)/4(\sqrt{n} \max_{1 \leq k \leq n} \|f_{x_k}\|_{L^\infty(R^n)} + 1).
\]

Then by Lemma 2.2, there exists \(q_0 > m + 1, \ e_0 > 0, \ 0 < e_0 < 1/2 \), such that

\[
\inf_{|x-x_0| \leq \delta} \nu^{(q_i)}(x, t) \leq \frac{\theta_1 + \theta}{2} \quad \forall 0 < t \leq \theta_0, \ q_i' \geq q_0.
\]

Hence for each \(q_i' \geq q_0 \) and \(0 < t \leq \theta_0 \), there exists an \(x_t \in B_\delta(x_0) \) such that

\[
u^{(q_i)}(x_t, t) \leq \frac{\theta_1 + \theta}{2} \quad \forall 0 < t \leq \theta_0.
\]

For any \(0 < \epsilon < 1 \), let \(f_\epsilon = f + \epsilon \) and let \(u^{(q_i)}_\epsilon \) be the solution of (1.1) in \(R^n \times (0, 1) \) with \(u^{(q_i)}_\epsilon(x, 0) = f_\epsilon(x) \) given by Lemma 1.5. Then by Lemma 1.5,

\[
|u^{(q_i)}_\epsilon(x, t) - u^{(q_i)}_\epsilon(x_t, t)|
\]

\[
= \left| \int_0^1 \frac{d}{ds} u^{(q_i)}_\epsilon(sx + (1 - s)x_t, t) ds \right|
\]

\[
\leq \int_0^1 |\nabla u^{(q_i)}_\epsilon(sx + (1 - s)x_t, t) \cdot (x - x_t)| ds
\]

\[
\leq \sqrt{n} \max_{1 \leq k \leq n} \|f_{x_k}\|_{L^\infty(R^n)} |x - x_t|
\]

\[
\leq 2\delta \sqrt{n} \max_{1 \leq k \leq n} \|f_{x_k}\|_{L^\infty(R^n)} \leq (\theta_1 - \theta)/2
\]

\[
\Rightarrow u^{(q_i)}_\epsilon(x, t) \leq u^{(q_i)}_\epsilon(x_t, t) + (\theta_1 - \theta)/2 \leq (\theta_1 + \theta)/2 + (\theta_1 - \theta)/2 \leq \theta_1
\]

for all \(x \in B_\delta(x_0), \ 0 < t \leq \theta_0, \ q_i' \geq q_0 \). Since \(u^{(q_i)}_\epsilon \to u^{(q_i)} \) uniformly on compact subsets of \(R^n \times (0, 1) \) as \(\epsilon \to 0 \) by Lemma 1.5, letting \(\epsilon \to 0 \) we get

\[
u^{(q_i)}(x, t) \leq \theta_1 \quad \forall x \in B_\delta(x_0), \ 0 < t \leq \theta_0, \ q_i' \geq q_0.
\]

Lemma 2.4. Suppose \(f \in C^1_0(R^n) \). Let \(g, \tilde{g} \) be as in Theorem 2.1 and let \(S^* \) be as in Lemma 2.2. Then \(g(x) = f(x) \), \(\tilde{g}(x) = 0 \) for all \(x \in S^* \cap S(\tilde{g}) \).

Proof. Let \(u^{(\infty)}, u^{(q_i)} \) be as in Theorem 2.1. By Theorem 2.1 we may assume without loss of generality that \(u^{(q_i)} \) converges uniformly to \(u^{(\infty)} \) on compact subsets of \(R^n \times (0, 1) \) as \(i \to \infty \). We also let \(\rho^{(q_i)}, p_j, \varepsilon_j \) be as in Lemma 1.8. Suppose \(x_0 \in S^* \cap S(\tilde{g}) \). Then there exists \(\theta, \theta_1 > 0 \) such that
\[g(x_0) \leq \theta < \theta_1 < 1. \] By Lemma 2.3, there exists \(q_0 > m + 1, \delta > 0, \varepsilon_0 > 0, 0 < \varepsilon_0 < 1/2 \) such that
\[u(q_i')(x, t) \leq \theta_1 \quad \forall x \in B_\delta(x_0), 0 < t \leq \varepsilon_0, q_i' \geq q_0. \]

Hence
\[
\begin{align*}
&\left| \int_{R^n} u(q_i')(x, t) \eta(x) dx - \int_{R^n} f(x) \eta(x) dx \right| \\
&= \left| \int_0^t \int_{R^n} \left[\frac{\theta^{q_i'}}{q_i'} \eta_{x_1} \right] dx dt \right|
\end{align*}
\]
\[
\leq \theta_i^n \|\Delta \eta\|_{L^1(R^n)} t + \frac{\theta^{q_i'}}{q_i'} \|\eta_{x_1}\|_{L^1(R^n)} t \quad \forall q_i' \geq q_0, 0 < t \leq \varepsilon_0, \eta \in C_0^\infty(B_\delta(x_0)).
\]

Letting \(i \to \infty \),
\[
\begin{align*}
&\left| \int_{R^n} u(\infty)(x, t) \eta(x) dx - \int_{R^n} f(x) \eta(x) dx \right| \\
&\leq \theta_i^n \|\Delta \eta\|_{L^1(R^n)} t + \frac{\theta^{q_i'}}{q_i'} \|\eta_{x_1}\|_{L^1(R^n)} t \quad \forall q_i' \geq q_0, 0 < t \leq \varepsilon_0, \eta \in C_0^\infty(B_\delta(x_0)).
\end{align*}
\]

Letting \(t \to 0 \),
\[
\begin{align*}
&\int_{R^n} \eta dx = \int_{R^n} f \eta dx \quad \forall \eta \in C_0^\infty(B_\delta(x_0)) \Rightarrow g(x_0) = f(x_0)
\end{align*}
\]
since \(x_0 \in S(g) \). Similarly
\[
\begin{align*}
&\int_{B_\delta(x_0)} p(q_i')(x, e_j) dx \\
&= \int_{B_\delta(x_0)} \int_0^{e_j} u(q_i')q_i' dx \leq \frac{\theta^{q_i'}}{q_i'} |B_\delta(x_0)| e_j \to 0 \text{ as } i \to 0 \quad \forall j = 1, 2, \ldots
\end{align*}
\]
\[\Rightarrow \int_{B_\delta(x_0)} p_j(x) dx = 0 \quad \text{by Fatou's lemma since } p_j \geq 0 \]
\[\Rightarrow \int_{B_\delta(x_0)} \tilde{g}(x) dx = 0 \quad \text{by Fatou's lemma since } \tilde{g} \geq 0 \]
\[\Rightarrow \tilde{g} \equiv 0 \text{ on } B_\delta(x_0) \]
\[\Rightarrow \tilde{g}(x_0) = 0 \text{ since } x_0 \in S(\tilde{g}). \]

Lemma 2.5. Suppose \(f \in C_0^1(R^n) \) and let \(g, \tilde{g} \) be as in Theorem 2.1. Then there exists \(r' > 0 \) such that
\[
\begin{align*}
g(x) &= f(x), \\
\tilde{g}(x) &= 0
\end{align*}
\]
a.e. \(x \in R^n \setminus B_r(0) \)

Proof. Let \(u(\infty), u(q_i') \) be as in Theorem 2.1, \(S^* \) be as in Lemma 2.2 and let \(S_1 = S(g) \cap S(\tilde{g}) \cap G(u(\infty), g) \). \(S_2 = S(g) \cap G(u(\infty), g) \). For any \(0 < \theta < 1, r > 0 \), let \(A_{\theta,r} = \{ x \in R^n \setminus B_r(0) : g(x) \geq \theta \} \). We now fix \(\theta, \theta_1 \in (0, 1) \) such that \(\theta < \theta_1 \). Choose a constant \(\theta' > 0 \) such that \(\theta < \theta' < \theta_1 \) and let
\[
\delta = \min((\theta' - \theta)/4(\sqrt{n} \max_{1 \leq k \leq n} \| f_{x_k} \|_{L^\infty(R^n)} + 1), 1). \]
Since \(g \in L^1(\mathbb{R}^n) \),
\[
\int_{|x| \geq r} g\,dx \to 0 \text{ as } r \to 0.
\]
Thus there exists \(r_0 > 0 \) such that
\[
\int_{|x| \geq r_0} g\,dx \leq \frac{1}{2} \theta |B_\delta(0)|
\]
\[
\Rightarrow \theta |A_{\theta, r_0}| \leq \frac{1}{2} \theta |B_\delta(0)|
\]
\[
\Rightarrow |A_{\theta, r_0}| \leq \frac{1}{2} |B_\delta(0)|.
\]

Let \(r' = r_0 + 1 \). Since \(|\mathbb{R}^n \setminus S_1| = 0 \) by the result of [DFK] and Chapter 1 of [S], (2.6) holds for a.e. \(x \in A_{\theta, r'} \) by Lemma 2.4. Hence in order to prove the lemma, it suffices to show that (2.6) holds for a.e. \(x \in A_{\theta, r} \cap S_1 \). Let \(y_0 \in A_{\theta, r} \cap S_1 \). If \(|B_\delta(y_0) \cap A_{\theta, r}| = 0 \), then
\[
g(z) \geq \theta \text{ a.e. } z \in B_\delta(y_0) \Rightarrow |A_{\theta, r_0}| \geq |B_\delta(y_0)|
\]
since \(B_\delta(y_0) \subset \mathbb{R}^n \setminus B_\delta(0) \). This contradicts (2.7). Thus \(|B_\delta(y_0) \cap A_{\theta, r'}| \neq 0 \). Since \(|(B_\delta(y_0) \cap A_{\theta, r'}) \setminus (B_\delta(y_0) \cap A_{\theta, r'} \cap S_2)| = 0 \), \(B_\delta(y_0) \cap A_{\theta, r'} \cap S_2 \neq \emptyset \) and there exists \(x_0 \in B_\delta(y_0) \cap A_{\theta, r'} \cap S_2 \subset S^* \). By Lemma 2.3, there exists \(q_0 > m + 1 \) and \(\varepsilon_0 > 0 \), \(0 < \varepsilon_0 < 1/2 \), such that
\[
u(q')(x, t) \leq \theta' \quad \forall x \in B_\delta(x_0), \quad 0 < t \leq \varepsilon_0, \quad q' \geq q_0.
\]

Letting \(i \to \infty \),
\[
u^{(\infty)}(x, t) \leq \theta' \quad \forall x \in B_\delta(x_0), \quad 0 < t \leq \varepsilon_0
\]
\[
\Rightarrow \int_{\mathbb{R}^n} \nu^{(\infty)}(x, t)\eta(x)\,dx \leq \theta' \int_{\mathbb{R}^n} \eta\,dx \quad \forall \eta \in C_0(B_\delta(x_0))
\]
\[
\Rightarrow \int_{\mathbb{R}^n} g\eta\,dx \leq \theta' \int_{\mathbb{R}^n} \eta\,dx \quad \forall \eta \in C_0(B_\delta(x_0)) \quad \text{as } t \to 0
\]
\[
\Rightarrow g(y_0) \leq \theta' < 1
\]
since \(y_0 \in S(g) \cap B_\delta(x_0) \). Hence \(y_0 \in S^* \cap S(\bar{g}) \). Thus (2.6) holds for \(x = y_0 \) by Lemma 2.4 and the lemma follows.

Corollary 2.6. Suppose \(f \in C^1_0(\mathbb{R}^n) \) and \(\bar{g} \) is as in Theorem 2.1. Then \(\bar{g} \in L^1(\mathbb{R}^n) \).

Proof. The lemma follows directly from Lemma 2.5 and the fact that \(\bar{g} \in L^\infty_{\text{loc}}(\mathbb{R}^n) \).

Lemma 2.7. For any \(0 \leq f_1, f_2, g_1, g_2, \bar{g}_1, \bar{g}_2 \in L^1(\mathbb{R}^n) \), \(0 \leq g_1, g_2 \leq 1 \), \(\bar{g}_1, \bar{g}_2 \geq 0 \), if
\[
g_i + (\bar{g}_i)_{x_1} = f_i \quad \text{in } \mathcal{D}'(\mathbb{R}^n)
\]
and
\[
g_i(x) = f_i(x), \quad \bar{g}_i(x) = 0 \quad \text{whenever } g_i(x) < 1 \text{ a.e. } x \in \mathbb{R}^n
\]
for \(i = 1, 2 \), then
\[
\int_{|x_1| \leq R'} \int_{\mathbb{R}^{n-1}} |\bar{g}_1 - \bar{g}_2|(x_1, x')\,dx'\,dx_1 \leq 2R'\|f_1 - f_2\|_{L^1(\mathbb{R}^n)} \quad \forall R' > 0.
\]
Proof. We will use a modification of an argument of [SX]. By (2.8),
\[(g_1 - g_2) + (\tilde{g}_1 - \tilde{g}_2)_{x_1} = f_1 - f_2 \quad \text{in} \mathcal{D}'(\mathbb{R}^n) \]
(2.10)
\[
\Rightarrow \int_{\mathbb{R}^n} [(g_1 - g_2)\eta - (\tilde{g}_1 - \tilde{g}_2)\eta_{x_1}] \, dx
\]
\[
= \int_{\mathbb{R}^n} (f_1 - f_2)\eta \, dx \quad \forall \eta \in C_0^\infty(\mathbb{R}^n).
\]
Putting \(\eta(x) = \rho_{\epsilon}(\xi - x)\) in (2.10), we get
(2.11)
\[
(\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)_{\xi,\epsilon}(\xi) = (f_1,\epsilon - f_2,\epsilon)(\xi) - (g_1,\epsilon - g_2,\epsilon)(\xi) \quad \forall \xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n.
\]
For any \(k = 1, 2, \ldots\), we let \(p_k(\cdot) \in C_0^\infty(\mathbb{R})\), \(0 \leq p_k \leq 1\), be such that \(p_k(x) \equiv 1\) for \(x \geq 1/k\), \(p_k(x) \equiv 0\) for \(x \leq 1/2k\) and \(\|p_k, x\|_{L^\infty} \leq 5k\). Then for all \(z_1, y_1 \in \mathbb{R}\),
\[
\int_{\mathbb{R}^n} (\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(z_1, x')p_k(\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(z_1, x') \, dx'
\]
\[- \int_{\mathbb{R}^n} (\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(y_1, x')p_k(\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(y_1, x') \, dx'
\]
(2.12)
\[
\Rightarrow \int_{\mathbb{R}^n} (\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(z_1, x')p_k(\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(z_1, x') \, dx'
\]
\[- \int_{\mathbb{R}^n} (\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(y_1, x')p_k(\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(y_1, x') \, dx'
\]
by (2.11). Since \(\tilde{g}_1, \tilde{g}_2 \in L^1(\mathbb{R}^n)\),
\[
\int_{\mathbb{R}^n} |\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon| \cdot |p_k(\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)| \, dx \leq \int_{\mathbb{R}^n} (\tilde{g}_1 + \tilde{g}_2) \, dx < \infty.
\]
Hence there exists a sequence \(\{y_1^j\}_{j=1}^\infty \subset \mathbb{R}\), \(y_1^j \to -\infty\) as \(j \to \infty\) such that
\[
\int_{\mathbb{R}^n} (\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(y_1^j, x')p_k(\tilde{g}_1,\epsilon - \tilde{g}_2,\epsilon)(y_1^j, x') \, dx' \to 0 \quad \text{as} \quad j \to \infty.
\]
Putting $y_1 = y_1^j$ in (2.12) and letting $j \to \infty$, we get

\[
\int_{R^{n-1}} (\tilde{g}_1, e - \tilde{g}_2, e)(z_1, x')p_k(\tilde{g}_1, e - \tilde{g}_2, e)(z_1, x') \, dx' \\
+ \int_{R^{n-1}} \int_{-\infty}^{z_1} (g_1, e - g_2, e)(x_1, x')p_k(\tilde{g}_1, e - \tilde{g}_2, e)(x_1, x') \, dx_1 \, dx' \\
= \int_{R^{n-1}} \int_{-\infty}^{z_1} (\tilde{g}_1, e - \tilde{g}_2, e)p_k'(\tilde{g}_1, e - \tilde{g}_2, e) \\
\cdot [(f_1, e - f_2, e) - (g_1, e - g_2, e)](x_1, x') \, dx_1 \, dx' \\
(2.13) + \int_{R^{n-1}} \int_{-\infty}^{z_1} (f_1, e - f_2, e)(x_1, x')p_k(\tilde{g}_1, e - \tilde{g}_2, e)(x_1, x') \, dx_1 \, dx'.
\]

Since $\tilde{g}_1, \tilde{g}_2 \in L^1(R^n)$,

\[
\int_R \left| \int_{R^{n-1}} (\tilde{g}_1, e - \tilde{g}_2, e)(z_1, x')p_k(\tilde{g}_1, e - \tilde{g}_2, e)(z_1, x') \, dx' \right| \, dz_1 \\
\leq \int_{R^n} |(\tilde{g}_1, e - \tilde{g}_2, e) - (\tilde{g}_1 - \tilde{g}_2)|p_k(\tilde{g}_1, e - \tilde{g}_2, e) \, dx \\
+ \int_{R^n} (\tilde{g}_1 - \tilde{g}_2) \cdot |p_k(\tilde{g}_1, e - \tilde{g}_2, e) - p_k(\tilde{g}_1 - \tilde{g}_2)| \, dx \\
\leq \int_{R^n} |\tilde{g}_1, e - \tilde{g}_1| \, dx + \int_{R^n} |\tilde{g}_2, e - \tilde{g}_2| \, dx \\
+ \int_{R^n} (\tilde{g}_1 + \tilde{g}_2) \cdot |p_k(\tilde{g}_1, e - \tilde{g}_2, e) - p_k(\tilde{g}_1 - \tilde{g}_2)| \, dx \\
\to 0 \quad \text{as } \varepsilon \to 0
\]

by the Lebesgue dominated convergence theorem and Theorem 2 in Chapter 3 of [S]. Hence there exists a sequence $\{\varepsilon_j\}_{j=1}^\infty \subset R$, $\varepsilon_j \to 0$ as $j \to \infty$, such that

\[
\int_{R^{n-1}} (\tilde{g}_1, \varepsilon_j - \tilde{g}_2, \varepsilon_j)(z_1, x')p_k(\tilde{g}_1, \varepsilon_j - \tilde{g}_2, \varepsilon_j)(z_1, x') \, dx' \\
\to \int_{R^{n-1}} (\tilde{g}_1 - \tilde{g}_2)(z_1, x')p_k(\tilde{g}_1 - \tilde{g}_2)(z_1, x') \, dx'.
\]
a.e. \(z_1 \in R \) as \(j \to \infty \). On the other hand,

\[
\left| \int_{R^n-1} \int_{-\infty}^{z_1} (\bar{g}_1, e - \bar{g}_2, e) p'_k (\bar{g}_1, e - \bar{g}_2, e) \cdot [(g_1, e - g_2, e) - (f_1, e - f_2, e)] (x_1, x') \mathrm{d}x_1 \mathrm{d}x' \right|
\]

\[
- \int_{R^n-1} \int_{-\infty}^{z_1} (\bar{g}_1 - \bar{g}_2) p'_k (\bar{g}_1 - \bar{g}_2) [(g_1 - g_2) - (f_1 - f_2)] (x_1, x') \mathrm{d}x_1 \mathrm{d}x'
\]

\[
\leq \int_{R^n} \left| (\bar{g}_1, e - \bar{g}_2, e) p'_k (\bar{g}_1, e - \bar{g}_2, e) [(g_1, e - g_2, e) - (g_1 - g_2)] \right| \mathrm{d}x
\]

\[
+ \int_{R^n} \left| (\bar{g}_1, e - \bar{g}_2, e) p'_k (\bar{g}_1, e - \bar{g}_2, e) [(f_1, e - f_2, e) - (f_1 - f_2)] \right| \mathrm{d}x
\]

\[
+ \int_{R^n} \left| (\bar{g}_1, e - \bar{g}_2, e) p'_k (\bar{g}_1, e - \bar{g}_2, e) - (\bar{g}_1 - \bar{g}_2) p'_k (\bar{g}_1 - \bar{g}_2) \right| (g_1 - g_2) \mathrm{d}x
\]

\[
+ \int_{R^n} \left| (\bar{g}_1, e - \bar{g}_2, e) p'_k (\bar{g}_1, e - \bar{g}_2, e) - (\bar{g}_1 - \bar{g}_2) p'_k (\bar{g}_1 - \bar{g}_2) \right| (f_1 - f_2) \mathrm{d}x
\]

\[
\leq 5 \int_{R^n} \left| (g_1, e - g_1) + |g_2, e - g_2| + |f_1, e - f_1| + |f_2, e - f_2| \right| \mathrm{d}x
\]

\[
+ \int_{R^n} \left| (\bar{g}_1, e - \bar{g}_2, e) p'_k (\bar{g}_1, e - \bar{g}_2, e) - (\bar{g}_1 - \bar{g}_2) p'_k (\bar{g}_1 - \bar{g}_2) \right| (g_1 + g_2 + f_1 + f_2) \mathrm{d}x
\]

\[
\to 0 \quad \text{as } \varepsilon \to 0
\]

by the Lebesgue dominated convergence theorem since the integrand of the last integral above is bounded by \(5(g_1 + g_2 + f_1 + f_2) \in L^1(R^n) \) and tends to 0 as \(k \to \infty \). Similarly

\[
\int_{R^n-1} \int_{-\infty}^{z_1} (g_1, e - g_2, e) (x_1, x') p_k (\bar{g}_1, e - \bar{g}_2, e) (x_1, x') \mathrm{d}x_1 \mathrm{d}x'
\]

\[
\to \int_{R^n-1} \int_{-\infty}^{z_1} (g_1 - g_2) (x_1, x') p_k (\bar{g}_1 - \bar{g}_2) (x_1, x') \mathrm{d}x_1 \mathrm{d}x' \quad \text{as } \varepsilon \to 0
\]

and

\[
\int_{R^n-1} \int_{-\infty}^{z_1} (f_1, e - f_2, e) (x_1, x') p_k (\bar{g}_1, e - \bar{g}_2, e) (x_1, x') \mathrm{d}x_1 \mathrm{d}x'
\]

\[
\to \int_{R^n-1} \int_{-\infty}^{z_1} (f_1 - f_2) (x_1, x') p_k (\bar{g}_1 - \bar{g}_2) (x_1, x') \mathrm{d}x_1 \mathrm{d}x' \quad \text{as } \varepsilon \to 0.
\]
Putting $\varepsilon = \varepsilon_j$ in (2.13) and letting $j \to \infty$, we get

\[\int_{\mathbb{R}^n} (\overline{\varepsilon}_1 - \overline{\varepsilon}_2)(z_1, x')p_k(\overline{g}_1 - \overline{g}_2)(z_1, x')dx' \]

\[+ \int_{\mathbb{R}^n} \int_{-\infty}^{z_1} (g_1 - g_2)(x_1, x')p_k(\overline{g}_1 - \overline{g}_2)(x_1, x')dx_1dx' \]

\[= \int_{\mathbb{R}^n} \int_{-\infty}^{z_1} (\overline{g}_1 - \overline{g}_2)p_k(\overline{g}_1 - \overline{g}_2)[(f_1 - f_2) - (g_1 - g_2)](x_1, x')dx_1dx' \]

\[+ \int_{\mathbb{R}^n} \int_{-\infty}^{z_1} (f_1 - f_2)(x_1, x')p_k(\overline{g}_1 - \overline{g}_2)(x_1, x')dx_1dx' \]

\[\leq I_1 + \int_{\mathbb{R}^n} (f_1 - f_2)_+dx \quad \text{a.e. } z_1 \in \mathbb{R} \]

Since $p'_k(s) = 0$ for $s \leq 1/2k$ or $s \geq 1/k$, I_1 is bounded by

\[\int_{\mathbb{R}^n} |(\overline{g}_1 - \overline{g}_2)(x)|p'_k \|L^\infty \cdot (g_1 + g_2 + f_1 + f_2)(x) \cdot \chi_{A_k}(x_1, x')dx \]

\[\leq \int_{\mathbb{R}^n} \frac{1}{k} \cdot 5k \cdot (g_1 + g_2 + f_1 + f_2)(x) \cdot \chi_{A_k}(x)dx \]

\[\leq 5 \int_{\mathbb{R}^n} (g_1 + g_2 + f_1 + f_2)(x) \cdot \chi_{A_k}(x)dx \]

\[\to 0 \quad \text{as } k \to \infty \]

by the Lebesgue dominated convergence theorem since $g_1, g_2, f_1, f_2 \in L^1(\mathbb{R}^n)$ and

\[(g_1 + g_2 + f_1 + f_2)(x)\chi_{A_k}(x) \to 0 \quad \text{as } k \to \infty \text{ a.e. } x \in \mathbb{R}^n \]

where $A_k = \{ x \in \mathbb{R}^n : 1/2k \leq (g_1 - g_2)(x) \leq 1/k \}$. Hence by letting $k \to \infty$ in (2.14), we get

\[\int_{\mathbb{R}^n} (\overline{g}_1 - \overline{g}_2)_+(z_1, x')(z_1, x')dx' \]

\[+ \int_{\mathbb{R}^n} \int_{-\infty}^{z_1} (g_1 - g_2)(x_1, x')\text{sign}_+(\overline{g}_1 - \overline{g}_2)(x_1, x')dx_1dx' \]

\[\leq \int_{\mathbb{R}^n} (f_1 - f_2)_+dx \quad \text{a.e. } z_1 \in \mathbb{R} \]

a.e. $z_1 \in \mathbb{R}$. Since $(g_1 - g_2)(x)\text{sign}_+(\overline{g}_1(x) - \overline{g}_2(x)) \geq 0$ a.e. $x \in \mathbb{R}^n$ by (2.9),

\[\int_{|x_1| \leq R'} \int_{\mathbb{R}^n} (\overline{g}_1 - \overline{g}_2)_+(z_1, x')(z_1, x')dx' \leq \int_{\mathbb{R}^n} (f_1 - f_2)_+dx \quad \text{a.e. } z_1 \in \mathbb{R} \]

\[\Rightarrow \int_{|x_1| \leq R'} \int_{\mathbb{R}^n} (\overline{g}_1 - \overline{g}_2)_+(x_1, x')dx'dx_1 \leq 2R' \int_{\mathbb{R}^n} (f_1 - f_2)_+dx \quad \forall R' > 0. \]

Similarly

\[\int_{|x_1| \leq R'} \int_{\mathbb{R}^n} (\overline{g}_1 - \overline{g}_2)_-(x_1, x')dx'dx_1 \leq 2R' \int_{\mathbb{R}^n} (f_1 - f_2)_-dx \quad \forall R' > 0. \]

Thus

\[\int_{|x_1| \leq R'} \int_{\mathbb{R}^n} |\overline{g}_1 - \overline{g}_2|(x_1, x')(x_1, x')dx'dx_1 \leq 2R' \int_{\mathbb{R}^n} |f_1 - f_2|dx \quad \forall R' > 0. \]
Corollary 2.8. Let \(0 \leq f \in L^1(\mathbb{R}^n) \). Then there exists at most one function \(g \), \(g \in L^1(\mathbb{R}^n), 0 \leq g \leq 1 \), and one function \(\tilde{g} \in L^1(\mathbb{R}^n), \tilde{g} \geq 0 \) satisfying
\[
\begin{cases}
g + (\tilde{g})_x = f & \text{in } D'(\mathbb{R}^n), \\
g(x) = f(x), \tilde{g}(x) = 0 & \text{whenever } g(x) < 1 \text{ a.e. } x \in \mathbb{R}^n.
\end{cases}
\]

As a consequence of Theorem 2.1, Lemmas 2.4, 2.5, Corollary 2.8 and the uniqueness theorem (Theorem 6.13) of [DK], we have

Theorem 2.9. Suppose \(f \in C^0(\mathbb{R}^n) \). Then there exists a unique function \(u^{(\infty)} \in C(\mathbb{R}^n \times (0, 1)), 0 \leq u^{(\infty)} \leq 1 \) such that \(u^{(q)} \) converges uniformly to \(u^{(\infty)} \) on compact subsets of \(\mathbb{R}^n \times (0, 1) \) as \(q \to \infty \). Moreover \(u^{(\infty)} \) satisfies (0.2) with initial value \(g \in L^1(\mathbb{R}^n), 0 \leq g \leq 1 \), satisfying (2.15) and (2.6) for some function \(\tilde{g} \in L^1(\mathbb{R}^n), \tilde{g} \geq 0 \). The convergence is uniform on every compact subsets of \(\mathbb{R}^n \times (0, 1) \) if \(f \in C^0(\mathbb{R}^n) \).

We are now ready to state and prove the main theorem.

Theorem 2.10. For any \(m > 1 \) fixed, there exists a unique function \(u^{(\infty)} \in C(\mathbb{R}^n \times (0, 1)), 0 \leq u^{(\infty)} \leq 1 \) such that \(u^{(q)} \) converges weakly to \(u^{(\infty)} \) in \((L^\infty(G))^* \) for any compact subset \(G \) of \(\mathbb{R}^n \times (0, 1) \) as \(q \to \infty \). Moreover \(u^{(\infty)} \) satisfies (0.2) with initial value \(g \in L^1(\mathbb{R}^n), 0 \leq g \leq 1 \), satisfying (2.15) and (2.6) for some function \(\tilde{g} \in L^1(\mathbb{R}^n), \tilde{g} \geq 0 \). The convergence is uniform on every compact subsets of \(\mathbb{R}^n \times (0, 1) \) if \(f \in C_0(\mathbb{R}^n) \).

Proof. Since \(f \in L^\infty(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \), we can choose a sequence \(\{f_j\}_{j=1}^\infty \subset C^0(\mathbb{R}^n) \) such that \(\|f_j\|_{L^\infty(\mathbb{R}^n)} \leq \|f\|_{L^\infty(\mathbb{R}^n)} + 1 \), \(\|f_j\|_{L^1(\mathbb{R}^n)} \leq \|f\|_{L^1(\mathbb{R}^n)} + 1 \) for all \(j = 1, 2, \ldots \) and \(\|f_j - f\|_{L^1(\mathbb{R}^n)} \to 0 \) as \(j \to \infty \).

For all \(j = 1, 2, \ldots \), let \(u^{(q)}_j \) be the solution of (1.1) in \(\mathbb{R}^n \times (0, 1) \) with initial value \(u^{(q)}_j(x, 0) = f_j(x) \). By Theorem 2.9, for each \(j = 1, 2, \ldots \), there exists an unique function \(g_j \in L^1(\mathbb{R}^n), 0 \leq g_j \leq 1 \), satisfying (2.15) and (2.6) for some function \(\tilde{g} \in L^1(\mathbb{R}^n), \tilde{g} \geq 0 \). The convergence is uniform on every compact subsets of \(\mathbb{R}^n \times (0, 1) \) if \(f \in C_0(\mathbb{R}^n) \).

We are now ready to state and prove the main theorem.
Letting \(i \to \infty \), we get by Fatou’s lemma,
\[
\int_{\tau_1}^{\tau_2} \int_{\mathbb{R}^n} |u_j^{(\infty)}(x, t) - u^{(\infty)}(x, t)| \, dx \, dt \leq (\tau_2 - \tau_1) \int_{\mathbb{R}^n} |f_j - f|(x) \, dx \to 0 \quad \text{as } j \to \infty
\]
for all \(0 < \tau_1 \leq \tau_2 < 1 \).

Hence \(u^{(\infty)} \) is the limit of the functions \(\{u_j^{(\infty)}\}_{j=1}^{\infty} \) in \(L^1_{\text{loc}}(\mathbb{R}^n \times (0, 1)) \) as \(j \to \infty \). Thus \(u^{(\infty)} \) is unique and \(u^{(q)} \) converges weakly to \(u^{(\infty)} \) in \((L^\infty(G))^* \) for any compact subset \(G \) of \(\mathbb{R}^n \times (0, 1) \) as \(q \to \infty \). This together with Theorem 2.1 implies that \(u^{(q)} \) converges uniformly to \(u^{(\infty)} \) on every compact subsets of \(\mathbb{R}^n \times (0, 1) \) as \(q \to \infty \) if \(f \in C_0(\mathbb{R}^n) \).

Moreover \(\{u_j^{(\infty)}\}_{j=1}^{\infty} \) has a subsequence converging a.e. \((x, t) \in \mathbb{R}^n \times (0, 1) \) to \(u^{(\infty)} \). Without loss of generality we may assume that \(u_j^{(\infty)}(x, t) \to u^{(\infty)}(x, t) \) a.e. \((x, t) \in \mathbb{R}^n \times (0, 1) \) as \(j \to \infty \).

On the other hand since \(u_j^{(\infty)} \) satisfies (0.2) and
\[
|u_j^{(q)}(x, t)| \leq \|f_j\|_{L^\infty(\mathbb{R}^n)} \leq \|f\|_{L^\infty(\mathbb{R}^n)} + 1 \quad \forall (x, t) \in \mathbb{R}^n \times (0, 1),
\]
(2.17)
\[
\Rightarrow \|u_j^{(\infty)}\|_{L^\infty(\mathbb{R}^n \times (0, 1))} \leq \|f\|_{L^\infty(\mathbb{R}^n)} + 1 \quad \forall j = 1, 2, \ldots
\]
as \(q \to \infty \) by Theorem 1.3, by the result of [S1] \(\{u_j^{(\infty)}\}_{j=1}^{\infty} \) has a subsequence \(\{u_k^{(\infty)}\}_{k=1}^{\infty} \) converging uniformly on compact subsets of \(\mathbb{R}^n \times (0, 1) \). Hence we may assume without loss of generality that \(\{u_j^{(\infty)}\}_{j=1}^{\infty} \) converges uniformly on compact subsets of \(\mathbb{R}^n \times (0, 1) \) to \(u^{(\infty)} \). Thus \(u^{(\infty)} \in C(\mathbb{R}^n \times (0, 1)) \).

Putting \(h(u) = 0, \quad u = u_j^{(\infty)} \) in (0.5) and letting \(j \to \infty \), we see that \(u^{(\infty)} \) satisfies (0.2). By (2.17) and the result of [DK], \(u^{(\infty)} \) has an initial trace \(d\mu \) and \(d\mu \) is absolutely continuous with respect to the Lebesgue measure. Hence \(d\mu = g(x) \, dx \) for some \(g \geq 0, \quad g \in L^1(\mathbb{R}^n) \). By (2.16) and Lemma 2.7,
\[
\int_{|x_1| \leq R'} \int_{R^n-1} |\tilde{g}_j - \tilde{g}_j'|(x_1, x') \, dx' \, dx_1 \leq 2R'\|f_j - f_{j'}\|_{L^1(\mathbb{R}^n)} \to 0 \quad \text{as } j, j' \to \infty \quad \forall R' > 0.
\]
Hence \(\{\tilde{g}_j\}_{j=1}^{\infty} \) is a Cauchy sequence in \(L^1_{\text{loc}}(\mathbb{R}^n) \) and there exists \(\tilde{g} \in L^1_{\text{loc}}(\mathbb{R}^n) \) such that \(\tilde{g}_j \to \tilde{g} \) in \(L^1_{\text{loc}}(\mathbb{R}^n) \) as \(j \to \infty \). Without loss of generality we may assume that \(\tilde{g}_j(x) \to \tilde{g}(x) \) a.e. \(x \in \mathbb{R}^n \). By the proof of Theorem 2.1, \(u_j^{(\infty)} \) satisfies, for all \(\eta \in C_0^\infty(\mathbb{R}^n), \quad 0 < \tau_2 < 1, \)
\[
\int_{0}^{\tau_2} \int_{\mathbb{R}^n} u_j^{(\infty)m} \Delta \eta \, dx \, dt + \int_{\mathbb{R}^n} \tilde{g}_j \eta x_1 \, dx = \int_{\mathbb{R}^n} u_j^{(\infty)}(x, t) \eta(x) \, dx - \int_{\mathbb{R}^n} f_j \eta \, dx
\]
\[
\Rightarrow \int_{0}^{\tau_2} \int_{\mathbb{R}^n} u^{(\infty)m} \Delta \eta \, dx \, dt + \int_{\mathbb{R}^n} \tilde{g} \eta x_1 \, dx
\]
\[
= \int_{\mathbb{R}^n} u^{(\infty)}(x, t) \eta(x) \, dx - \int_{\mathbb{R}^n} f \eta \, dx \quad \text{as } j \to \infty
\]
\[
\Rightarrow \int_{\mathbb{R}^n} \tilde{g} \eta x_1 \, dx = \int_{\mathbb{R}^n} g(x) \eta(x) \, dx - \int_{\mathbb{R}^n} f \eta \, dx \quad \text{as } \tau_2 \to 0
\]
\[
\Rightarrow \tilde{g} + \tilde{g}_x = f \quad \text{in } D'(\mathbb{R}^n).
Thus
\[
\left| \int (g - g_j) \eta \, dx \right| = \left| \int (\tilde{g} - \tilde{g}_j) \eta \, dx + \int (f - f_j) \eta \, dx \right|
\leq \| \eta \|_{L^\infty(\mathbb{R}^n)} \int_{|x_1| \leq R'} \int_{\mathbb{R}^{n-1}} |\tilde{g} - \tilde{g}_j|(x_1, x') \, dx' \, dx_1
+ \| \eta \|_{L^\infty(\mathbb{R}^n)} \int_{\mathbb{R}^n} |f - f_j| \, dx
\rightarrow 0
\]
as \(j \rightarrow \infty \) for all \(\eta \in C_0^\infty(\mathbb{R}^n) \) such that \(\text{supp} \ \eta \subset B_{R'}(0) \) for some \(R' > 0 \). Hence \(g_j \) converges weakly to \(g \) in \(\mathcal{D}'(\mathbb{R}^n) \) as \(j \rightarrow \infty \). We may assume without loss of generality that \(g_j(x) \rightarrow g(x) \) and \(\tilde{g}_j(x) \rightarrow \tilde{g}(x) \) a.e. \(x \in \mathbb{R}^n \). Let
\[
E = \{ x \in \mathbb{R}^n : g_j(x) \rightarrow g(x) \text{ and } \tilde{g}_j \rightarrow \tilde{g}(x) \text{ as } j \rightarrow \infty \},
E_0 = E \cap \{ g < 1 \} \cap \left(\bigcap_{j=1}^{\infty} (S(g_j) \cap S(\tilde{g}_j)) \cap G(u_j^{(\infty)}, g_j) \right).
\]
For any \(x_0 \in E_0 \), since \(g_j(x_0) \rightarrow g(x_0) \) as \(j \rightarrow \infty \), there exists \(j_0 \in \mathbb{Z}^+ \) such that \(g_j(x_0) < 1 \ \forall j \geq j_0 \). So \(g_j(x_0) = f(x_0) \) and \(\tilde{g}_j(x_0) = 0 \) for all \(j \geq j_0 \) by Lemma 2.4. Letting \(j \rightarrow \infty \), we have \(g(x_0) = f(x_0) \) and \(\tilde{g}(x_0) = 0 \). Since \(\{ g < 1 \} \setminus E_0 = 0 \), \(g(x_0) = f(x_0) \) and \(\tilde{g}(x_0) = 0 \) a.e. \(x_0 \in \{ g < 1 \} \) and the theorem follows.

References

[BBH] P. Bénilan, L. Boccardo and M. Herrero, *On the limit of solutions of \(u_t = \Delta u^m \) as \(m \rightarrow \infty \), Some Topics in Nonlinear PDE's*, Proceedings Int. Conf. Torino 1989, M. Bertsch et al., ed.

Institute of Mathematics, Academia Sinica, Nankang, Taipei, 11529, Taiwan, R. O. C.

E-mail address: makmhui@ccvax.sinica.edu.tw