Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions
HTML articles powered by AMS MathViewer
- by Konstantin Mischaikow, Hal Smith and Horst R. Thieme
- Trans. Amer. Math. Soc. 347 (1995), 1669-1685
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290727-7
- PDF | Request permission
Abstract:
From the work of C. Conley, it is known that the omega limit set of a precompact orbit of an autonomous semiflow is a chain recurrent set. Here, we improve a result of L. Markus by showing that the omega limit set of a solution of an asymptotically autonomous semiflow is a chain recurrent set relative to the limiting autonomous semiflow. In the special case that there is a Lyapunov function for the limiting semiflow, sufficient conditions are given for an omega limit set of the asymptotically autonomous semiflow to be contained in a level set of the Lyapunov function.References
- J. M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations.ations, J. Differential Equations 27 (1978), no. 2, 224–265. MR 461576, DOI 10.1016/0022-0396(78)90032-3
- C. Conley, The gradient structure of a flow. I, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 11–26, 9. With a comment by R. Moeckel. MR 967626, DOI 10.1017/S0143385700009305
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- Constantine M. Dafermos, Semiflows associated with compact and uniform processes, Math. Systems Theory 8 (1974/75), no. 2, 142–149. MR 445473, DOI 10.1007/BF01762184
- John E. Franke and James F. Selgrade, Abstract $\omega$-limit sets, chain recurrent sets, and basic sets for flows, Proc. Amer. Math. Soc. 60 (1976), 309–316 (1977). MR 423423, DOI 10.1090/S0002-9939-1976-0423423-X
- Jack K. Hale, Ordinary differential equations, 2nd ed., Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. MR 587488
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Jack K. Hale and Sjoerd M. Verduyn Lunel, Introduction to functional-differential equations, Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993. MR 1243878, DOI 10.1007/978-1-4612-4342-7
- Joseph P. LaSalle, Stability theory and invariance principles, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., 1974) Academic Press, New York, 1976, pp. 211–222. MR 0594977
- L. Markus, Asymptotically autonomous differential systems, Contributions to the theory of nonlinear oscillations, vol. 3, Annals of Mathematics Studies, no. 36, Princeton University Press, Princeton, N.J., 1956, pp. 17–29. MR 0081388
- R. K. Miller, Almost periodic differential equations as dynamical systems with applications to the existence of A.P. solutions, J. Differential Equations 1 (1965), 337–345. MR 185221, DOI 10.1016/0022-0396(65)90012-4
- Richard K. Miller and George R. Sell, A note on Volterra integral equations and topological dynamics, Bull. Amer. Math. Soc. 74 (1968), 904–908. MR 233160, DOI 10.1090/S0002-9904-1968-12075-0
- Richard K. Miller and George R. Sell, Volterra integral equations and topological dynamics, Memoirs of the American Mathematical Society, No. 102, American Mathematical Society, Providence, R.I., 1970. MR 0288381
- V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Mathematical Series, No. 22, Princeton University Press, Princeton, N.J., 1960. MR 0121520
- Clark Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), no. 3, 425–437. MR 494300, DOI 10.1216/RMJ-1977-7-3-425
- Stephen H. Saperstone, Semidynamical systems in infinite-dimensional spaces, Applied Mathematical Sciences, vol. 37, Springer-Verlag, New York-Berlin, 1981. MR 638477, DOI 10.1007/978-1-4612-5977-0
- George R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans. Amer. Math. Soc. 127 (1967), 241–262. MR 212313, DOI 10.1090/S0002-9947-1967-0212313-2
- George R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans. Amer. Math. Soc. 127 (1967), 241–262. MR 212313, DOI 10.1090/S0002-9947-1967-0212313-2
- Horst R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol. 30 (1992), no. 7, 755–763. MR 1175102, DOI 10.1007/BF00173267
- Horst R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math. 24 (1994), no. 1, 351–380. 20th Midwest ODE Meeting (Iowa City, IA, 1991). MR 1270045, DOI 10.1216/rmjm/1181072470
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1669-1685
- MSC: Primary 34C35; Secondary 34D05, 34K20, 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290727-7
- MathSciNet review: 1290727