## Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions

HTML articles powered by AMS MathViewer

- by Konstantin Mischaikow, Hal Smith and Horst R. Thieme PDF
- Trans. Amer. Math. Soc.
**347**(1995), 1669-1685 Request permission

## Abstract:

From the work of C. Conley, it is known that the omega limit set of a precompact orbit of an autonomous semiflow is a chain recurrent set. Here, we improve a result of L. Markus by showing that the omega limit set of a solution of an asymptotically autonomous semiflow is a chain recurrent set relative to the limiting autonomous semiflow. In the special case that there is a Lyapunov function for the limiting semiflow, sufficient conditions are given for an omega limit set of the asymptotically autonomous semiflow to be contained in a level set of the Lyapunov function.## References

- J. M. Ball,
*On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations.ations*, J. Differential Equations**27**(1978), no. 2, 224–265. MR**461576**, DOI 10.1016/0022-0396(78)90032-3 - C. Conley,
*The gradient structure of a flow. I*, Ergodic Theory Dynam. Systems**8$^*$**(1988), no. Charles Conley Memorial Issue, 11–26, 9. With a comment by R. Moeckel. MR**967626**, DOI 10.1017/S0143385700009305 - Charles Conley,
*Isolated invariant sets and the Morse index*, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR**511133**, DOI 10.1090/cbms/038 - Constantine M. Dafermos,
*Semiflows associated with compact and uniform processes*, Math. Systems Theory**8**(1974/75), no. 2, 142–149. MR**445473**, DOI 10.1007/BF01762184 - John E. Franke and James F. Selgrade,
*Abstract $\omega$-limit sets, chain recurrent sets, and basic sets for flows*, Proc. Amer. Math. Soc.**60**(1976), 309–316 (1977). MR**423423**, DOI 10.1090/S0002-9939-1976-0423423-X - Jack K. Hale,
*Ordinary differential equations*, 2nd ed., Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. MR**587488** - Jack K. Hale,
*Asymptotic behavior of dissipative systems*, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR**941371**, DOI 10.1090/surv/025 - Jack K. Hale and Sjoerd M. Verduyn Lunel,
*Introduction to functional-differential equations*, Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993. MR**1243878**, DOI 10.1007/978-1-4612-4342-7 - Joseph P. LaSalle,
*Stability theory and invariance principles*, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., 1974) Academic Press, New York, 1976, pp. 211–222. MR**0594977** - L. Markus,
*Asymptotically autonomous differential systems*, Contributions to the theory of nonlinear oscillations, vol. 3, Annals of Mathematics Studies, no. 36, Princeton University Press, Princeton, N.J., 1956, pp. 17–29. MR**0081388** - R. K. Miller,
*Almost periodic differential equations as dynamical systems with applications to the existence of A.P. solutions*, J. Differential Equations**1**(1965), 337–345. MR**185221**, DOI 10.1016/0022-0396(65)90012-4 - Richard K. Miller and George R. Sell,
*A note on Volterra integral equations and topological dynamics*, Bull. Amer. Math. Soc.**74**(1968), 904–908. MR**233160**, DOI 10.1090/S0002-9904-1968-12075-0 - Richard K. Miller and George R. Sell,
*Volterra integral equations and topological dynamics*, Memoirs of the American Mathematical Society, No. 102, American Mathematical Society, Providence, R.I., 1970. MR**0288381** - V. V. Nemytskii and V. V. Stepanov,
*Qualitative theory of differential equations*, Princeton Mathematical Series, No. 22, Princeton University Press, Princeton, N.J., 1960. MR**0121520** - Clark Robinson,
*Stability theorems and hyperbolicity in dynamical systems*, Rocky Mountain J. Math.**7**(1977), no. 3, 425–437. MR**494300**, DOI 10.1216/RMJ-1977-7-3-425 - Stephen H. Saperstone,
*Semidynamical systems in infinite-dimensional spaces*, Applied Mathematical Sciences, vol. 37, Springer-Verlag, New York-Berlin, 1981. MR**638477**, DOI 10.1007/978-1-4612-5977-0 - George R. Sell,
*Nonautonomous differential equations and topological dynamics. I. The basic theory*, Trans. Amer. Math. Soc.**127**(1967), 241–262. MR**212313**, DOI 10.1090/S0002-9947-1967-0212313-2 - George R. Sell,
*Nonautonomous differential equations and topological dynamics. I. The basic theory*, Trans. Amer. Math. Soc.**127**(1967), 241–262. MR**212313**, DOI 10.1090/S0002-9947-1967-0212313-2 - Horst R. Thieme,
*Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations*, J. Math. Biol.**30**(1992), no. 7, 755–763. MR**1175102**, DOI 10.1007/BF00173267 - Horst R. Thieme,
*Asymptotically autonomous differential equations in the plane*, Rocky Mountain J. Math.**24**(1994), no. 1, 351–380. 20th Midwest ODE Meeting (Iowa City, IA, 1991). MR**1270045**, DOI 10.1216/rmjm/1181072470

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 1669-1685 - MSC: Primary 34C35; Secondary 34D05, 34K20, 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290727-7
- MathSciNet review: 1290727