Schur's partition theorem, companions, refinements and generalizations

Authors:
Krishnaswami Alladi and Basil Gordon

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1591-1608

MSC:
Primary 11P83; Secondary 05A17, 05A19, 11P81

DOI:
https://doi.org/10.1090/S0002-9947-1995-1297520-X

MathSciNet review:
1297520

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Schur's partition theorem asserts the equality , where is the number of partitions of into distinct parts and is the number of partitions of into parts with minimal difference and no consecutive multiples of . Using a computer search Andrews found a companion result , where is the number of partitions of whose parts satisfy according as or . By means of a new technique called the method of weighted words, a combinatorial as well as a generating function proof of both these theorems are given simultaneously. It is shown that and are only two of six companion partition functions , all equal to . A three parameter refinement and generalization of these results is obtained.

**[1]**Krishnaswami Alladi and Basil Gordon,*Generalizations of Schur’s partition theorem*, Manuscripta Math.**79**(1993), no. 2, 113–126. MR**1216769**, https://doi.org/10.1007/BF02568332**[2]**Krishnaswami Alladi, George E. Andrews, and Basil Gordon,*Generalizations and refinements of a partition theorem of Göllnitz*, J. Reine Angew. Math.**460**(1995), 165–188. MR**1316576****[3]**-,*Refinements and generalizations of Capparelli's conjecture on partitions*, J. Algebra (to appear).**[4]**George E. Andrews,*The theory of partitions*, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. MR**0557013****[5]**-,*On Schur's second partition theorem*, Glasgow Math. J.**9**(1967), 127-132.**[6]**-,*A new generalization of Schur's second partition theorem*, Acta Arith.**4**(1968), 429-434.**[7]**-,*A general partition theorem with difference conditions*, Amer. J. Math.**191**(1969), 18-24.**[8]**George E. Andrews,*The use of computers in search of identities of the Rogers-Ramanujan type*, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 377–387. MR**0316373****[9]**-,*Schur's theorem, Capparelli's conjecture and**-trinomial coefficients*, The Rademacher Legacy to Mathematics (Proc. Rademacher Centenary Conf, 1992), Contemp. Math., Amer. Math. Soc., Providence, RI, 1994, pp. 141-154.**[10]**D. M. Bressoud,*On a partition theorem of Göllnitz*, J. Reine Angew. Math.**305**(1979), 215–217. MR**518863**, https://doi.org/10.1515/crll.1979.305.215**[11]**David M. Bressoud,*A combinatorial proof of Schur’s 1926 partition theorem*, Proc. Amer. Math. Soc.**79**(1980), no. 2, 338–340. MR**565367**, https://doi.org/10.1090/S0002-9939-1980-0565367-X**[12]**Stefano Capparelli,*On some representations of twisted affine Lie algebras and combinatorial identities*, J. Algebra**154**(1993), no. 2, 335–355. MR**1206124**, https://doi.org/10.1006/jabr.1993.1017**[13]**H. Göllnitz,*Partitionen mit Differenzenbedingungen*, J. Reine Angew. Math.**225**(1967), 154–190 (German). MR**0211973**, https://doi.org/10.1515/crll.1967.225.154**[14]**I. J. Schur,*Zur additiven Zahlentheorie*, Gessammelte Abhandlungen, vol. 2, Springer-Verlag, Berlin, 1973, pp. 43-50.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11P83,
05A17,
05A19,
11P81

Retrieve articles in all journals with MSC: 11P83, 05A17, 05A19, 11P81

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1297520-X

Article copyright:
© Copyright 1995
American Mathematical Society