## Schur’s partition theorem, companions, refinements and generalizations

HTML articles powered by AMS MathViewer

- by Krishnaswami Alladi and Basil Gordon PDF
- Trans. Amer. Math. Soc.
**347**(1995), 1591-1608 Request permission

## Abstract:

Schur’s partition theorem asserts the equality $S(n) = {S_1}(n)$, where $S(n)$ is the number of partitions of $n$ into distinct parts $\equiv 1,2(\mod 3)$ and ${S_1}(n)$ is the number of partitions of $n$ into parts with minimal difference $3$ and no consecutive multiples of $3$. Using a computer search Andrews found a companion result $S(n) = {S_2}(n)$, where ${S_2}(n)$ is the number of partitions of $n$ whose parts ${e_i}$ satisfy ${e_i} - {e_{i + 1}} \geqslant 3,2or5$ according as ${e_i} \equiv 1,2$ or $(\bmod 3)$. By means of a new technique called the method of weighted words, a combinatorial as well as a generating function proof of both these theorems are given simultaneously. It is shown that ${S_1}(n)$ and ${S_2}(n)$ are only two of six companion partition functions ${S_j}(n),j = 1,2, \ldots 6$, all equal to $S(n)$. A three parameter refinement and generalization of these results is obtained.## References

- Krishnaswami Alladi and Basil Gordon,
*Generalizations of Schur’s partition theorem*, Manuscripta Math.**79**(1993), no. 2, 113–126. MR**1216769**, DOI 10.1007/BF02568332 - Krishnaswami Alladi, George E. Andrews, and Basil Gordon,
*Generalizations and refinements of a partition theorem of Göllnitz*, J. Reine Angew. Math.**460**(1995), 165–188. MR**1316576**
—, - George E. Andrews,
*The theory of partitions*, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR**0557013**
—, - George E. Andrews,
*The use of computers in search of identities of the Rogers-Ramanujan type*, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 377–387. MR**0316373**
—, - D. M. Bressoud,
*On a partition theorem of Göllnitz*, J. Reine Angew. Math.**305**(1979), 215–217. MR**518863**, DOI 10.1515/crll.1979.305.215 - David M. Bressoud,
*A combinatorial proof of Schur’s 1926 partition theorem*, Proc. Amer. Math. Soc.**79**(1980), no. 2, 338–340. MR**565367**, DOI 10.1090/S0002-9939-1980-0565367-X - Stefano Capparelli,
*On some representations of twisted affine Lie algebras and combinatorial identities*, J. Algebra**154**(1993), no. 2, 335–355. MR**1206124**, DOI 10.1006/jabr.1993.1017 - H. Göllnitz,
*Partitionen mit Differenzenbedingungen*, J. Reine Angew. Math.**225**(1967), 154–190 (German). MR**211973**, DOI 10.1515/crll.1967.225.154
I. J. Schur,

*Refinements and generalizations of Capparelli’s conjecture on partitions*, J. Algebra (to appear).

*On Schur’s second partition theorem*, Glasgow Math. J.

**9**(1967), 127-132. —,

*A new generalization of Schur’s second partition theorem*, Acta Arith.

**4**(1968), 429-434. —,

*A general partition theorem with difference conditions*, Amer. J. Math.

**191**(1969), 18-24.

*Schur’s theorem, Capparelli’s conjecture and*$q$

*-trinomial coefficients*, The Rademacher Legacy to Mathematics (Proc. Rademacher Centenary Conf, 1992), Contemp. Math., Amer. Math. Soc., Providence, RI, 1994, pp. 141-154.

*Zur additiven Zahlentheorie*, Gessammelte Abhandlungen, vol. 2, Springer-Verlag, Berlin, 1973, pp. 43-50.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 1591-1608 - MSC: Primary 11P83; Secondary 05A17, 05A19, 11P81
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297520-X
- MathSciNet review: 1297520