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ON THE PERIOD-TWO-PROPERTY OF THE MAJORITY OPERATOR
IN INFINITE GRAPHS

GADI MORAN

Abstract. A self-mapping M : X —» X of a nonempty set X has the Period-

Two-Property (p2p) if M2x = x holds for every Af-periodic point x e X.

Let X be the set of all {0, 1 }-labelings x : V —► {0, 1} of the set of vertices
F of a locally finite connected graph G . For x e X let Mx € X label v e V

by the majority bit that x applies to its neighbors, retaining v 's x-label in case

of a tie. We show that M has the p2p if there is a finite bound on the degrees

in G and £ log b„ —► 0, where b„ is the number of v 6 V at a distance at

most n from a fixed vertex vq € V .

0. Introduction

Let us say that a graph G has the period-two-property if the majority action

on the set of 0-1 labelings of its vertices (see abstract or (1.1)) has the p2p.

The p2p for finite graphs was observed in the late 1970s, when it appeared

as a special instance in several interesting classes of discrete-time dynamical
systems with the p2p ([GO], [PS], [PT]; see [GM] for an extensive survey and

further references). The need to establish the p2p for some infinite graphs arose

in our recent treatment of the r-majority operator Mr on two-way-infinite 0-
1-sequences. Mr replaces simultaneously each bit of such a sequence by the

majority bit of the (2r + l)-interval it centers [Ml], [M2]. It follows from

Theorem 1, that the r-majority operator indeed has the p2p. Moreover, it
follows that if the Euclidean distance p]ç(u,v) between any two members u, v

of a subset V of the A;-dimensional Euclidean space exceeds some fixed positive

distance h and if a graph G is formed by joining u and v in V only if

0 < Pk(u, v) < r for some fixed positive number r, then the majority operator

on this graph G has the p2p (Corollary 1.7). In particular, the p2p holds when

V is the set of "sites" in some infinite lattice in a Euclidean space, each site
is occupied with a "spin", say + or -, and the spins undergo simultaneous

change at discrete time steps, where the spin at site v e V at time t + 1 is +

or - according to the majority of spins in the ball of radius r centered at v

at time t (changing its spin in the case of a tie). Thus, if any given distribution
of spins at t = 0 ever reappears at some future time, it reappears at t = 2.
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As the p2p holds for a graph G iff it holds for each of its connected compo-
nents, we assume in the sequel that G is connected. Theorem 1 guarantees the

p2p for G if two conditions are satisfied, namely

BD: vertex degrees have a finite bound,

and
SEG: G has subexponential growth (see (1.8) and Definition 1.5, §1). As

BD and SEG trivally hold for finite graphs, Theorem 1 is an extension of the

familiar p2p for finite graphs. In a sense, this extension is sharp: Examples 1
and 2 in § 1 present respectively graphs without BD but with SEG and with BD

without SEG, that lack the p2p (Remark 1.6).
There is, in fact, a quantitative trade-off between the restrictions expressed

by the conditions BD and SEG. A numerical parameter g(G) defined for a
connected locally finite graph G—the growth of G (Definition 1.5)—satisfies

I < g(G) < d(G)- I whenever d(G) > 1 is the maximum degree of the graph
G satisfying BD. The SEG simply means that g(G) = 1. Theorem 2—which

implies Theorem 1—tells us that in fact, if g(G) < 1 -f- \ , where d is the largest

even integer satisfying d <d(G), then G has the p2p. This result is sharp: in

Example 2—where the p2p fails—we have g(G) — 1 + \ .
In § 1 we offer precise definitions and formulation of the results.

In §2 we give a necessary and sufficient condition for a self-mapping M of

an abstract set X to have the p2p, namely, the existence of a p2p form for M
(Theorem 2.0). Let us briefly explain this notion.

We say that M solves a binary form b: XxX —* P ofA' into a partial order

P if for each x e X Mx maximizes b(x, y) over all y e X. The form b is

called a p2p form for M in P if b is symmetric, M solves b, and moreover,
Mx is the only solution in X to the maximization problem "maximize b(x, y)

over y G X ".

Theorem 3.0 in §3 provides convenient general sufficient conditions for "lo-

cally" defined operators on networks to have the p2p. Its specialization Theorem

3.1 puts these conditions in a form useful for proving Theorem 2 in §4.

The conditions BD and SEG of Theorem 1 suffice to ensure the p2p for a

wide range of operators other than M. As a rule, each such operation ad-

mits some quantitative condition relating g(G) to d(G) (as Theorem 2 does

in M's case) securing its p2p, the way Theorem 2 implies Theorem 1. The
quantitative condition, however, is sensitive to the particular operator under

consideration and follows from an analysis of the "local" rule defining it. The

systematic extension of known p2p theorems for operators on finite graphs—or

more generally, on finite networks—to the infinite by spelling out the relevant
quantitative condition is beyond the scope of this paper and will hopefully be

carried out in the future. Here we shall illustrate the situation by establishing

the p2p for one more operator—the majority action M^ on /c-colored graphs.
A/W acts on functions x: V -* {0, ... , k- 1}—where the tie-breaking rule is

"least-best":  M^x(v) is the smallest ce{0.fc-1} which is taken by
x most often in the neighbourhood of the vertex v of a locally finite graph

G (see (1.27)). The p2p for this operation on finite graphs is proved in [PS].
Theorem 3.2—a slight generalization of Theorem 3.1 and another immediate

corollary of Theorem 3.0—is suitable for establishing Theorem 3, which states

that M^ has the p2p in arbitrary graphs with BD and SEG. Theorem 3.2 is
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used to prove Theorem 4—the quantitative result yielding Theorem 3—which

states that M^ acting on a connected graph G with maximum finite degree
d > 1 has the p2p if g(G) < (I + ¿èr)1/i:.

1. Notation and results

We let N, No, and Z denote the sets of positive, nonnegative, and all integers
respectively. For «gN,Z„:={0,1,...,m-1}. R denotes the set of real

numbers. \A\ denotes the cardinality of a set A . A x B and BA denote the

cartesian product of A by B and the set of all functions, or mappings, from
B into A ; i.e.

AxB: ={(a,b)\aeA,beB},

BA: ={x\x:B^A}.

A graph G = (V, N) consists of a nonempty set V of vertices and an

irreflexive symmetric binary relation A ç V x V. Writing uNv for (u, v) e
N, this means

(NI) -<vNv   (v g V),
(N2) uNv =>■ vNu  (u, v e V).
We say that u is a neighbour of v (in G) if uNv and accordingly call the

set

Nv: ={«G V: uNv}

the neighbourhood of v in G. Notice that by (NI), v does not belong to A^ .

The cardinal number dG(v) := \NV\ is called the degree of v .

Fix a graph G. G is called locally finite if dG(v) is finite for every v e V.
G is called finite if V is finite.

Let C be a nonempty set. A function x: V —> C is referred to as a C-

coloring, a C-labeling or a C-Configuration of V (or of G). We let X :- VC

denote the set of all C-configurations; the set C will be clear from the context

(or irrelevant).

Given a C-configuration x : V -+ C and v e V, Nv is partitioned by x

into (possibly empty) color-subsets Nv(x, c), c eC, of cardinalities dv(x, c).
That is,

Í10) Nv(x,c):= {ueNv: x(u) = c},

[   ' dv(x, c) := \Nv(x, c)\      (veV,xeX,ceC).

Now assume that G is locally finite, C = Z2 = {0, 1}, and let x: V —► Z2
be a Z2-configuration. Then a Z2-configuration Mx is defined by

Mx(v):=c if dG(v) < 2dv(x, c),

^'' Mx(v):=x(v)       if dG(v) = 2dv(x, c).

The mapping M : X —> X so defined is called the majority operation on the
set of Z2-configurations of G, or, briefly, the majority operation on G. Notice
that (1.1) defines M properly whenever the set C of colors contains no more
than two elements.

For the arbitrary self-mapping M: X -* X of an arbitrary set X and any
n e Nq , M" : X —> X is defined inductively as usual by M°x = x, Mn+lx —
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M(Mnx) (x G X). We say that M has the period-two-property (p2p) if it

satisfes

( 1.2) Vx G XVn e N[M"x = x =>• A/2* = x].

This paper generalizes:

Theorem 1.0 [GO]. Let G be a finite graph. Then the majority operator defined

by (1.1) acting on X=VZ2 has the p2p.

Now we present two basic examples of (infinite, locally finite) graphs indi-

cating that the word "finite" cannot be dropped in Theorem 1.0 and suggesting

its generalization, Theorem 1 below. First some more notation.
Let G = (V, N) be a locally finite graph, and let the sequence of sets V :=

(Vn)n€N0 satisfy VH¿0, VnnVm = 0 for n ¿ m, and V = IJ„6N„ *» • Let C

be a set (of "colours"), and for 8: No -> C define xg: V -> C by

(1.3) V« G NoVu G Vn[xs(v) = 8(n)].

Now let C = Z2. We say that F is a shift system for M if for every 3 : No —► C

(1.4) V« g N0Vu G Vn[Mxs(v) = 3(n + 1)].

For 8: N0 — C define 55: N0 -» C by

S<J(n) := 3(n +1).

Thus V is a shift system for G iff for every 3

(1.5) Mxs = xSs;

i.e., if x = Xg , then A/x assigns to V„ the color that x assigns to Vn+X.

Assume that V is a shift system for G. Then G violently violates the p2p.

Indeed for any 8: No -» Z2, n, k e N0 , and any v e V„ we have Mkxs(v) =

8(n + k). Hence, if r e N and 8: N0 -> Z2 is defined by <?(«) = 1 iff n
is divisible by r, then the Z2-configuration x := Xg satisfies Mrx = x but

Msx ¿x for s=l, ... ,r-l and so (1.2) fails for x if r > 2.

Example 1. Let V=(F„)„€No be a sequence of disjoint finite sets Vn satisfying

\Vn\ = L^J, and V := (J„€No Vn . Define a graph Gx = (V, N) whose set of
vertices is V and with the following neighbourhood relation A. Let u, v e V

and let m, n e No satisfy ueV„, v eVm . Then

mA-u: <& \n - m\ = I.

Now consider deK„ for some n e N. Then Nv = l^_i U Vn+X . For ¿: No —>

Z2 and c = 8(n + 1) we have by (1.3) Nv(xg, c) 2 Vn+X , so ú?w(x¿, c) >

\Vn+x\ > jdG(v). Hence, by (1.1) (Mxg)(v) = c, i.e., (Mxg)(v) = 3(n + 1).
Thus, F is a shift system for Gx.

Remark 1.1. Let |C| > 2, and let X denote the set of C-configurations of the

graph Gi. Let further M: X —> X be any mapping satisfying

(1.6) (Mx)(v) = c    if Vc'eC[c'¿c^dv(x,c')<dv(x,c)].

For any 8¿ N0 -► C define xs: V -> C by (1.3). Then (1.5) still holds. In

particular, M does not have the p2p.
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Remark 1.2. We have dG(v) = 1 for v e Vq ; and for v eVn, n > 0,

dG(v) = |K,_,| + \Vn+x\ = L^J + L^J.

i.e.
dG(v) = n + 1 or n + 2 accordingly as n is even or odd.
Gx fails to have the p2p; and by Remark 1.2, the degree function dG(v) has

no finite bound either.

Let us define, for an arbitrary graph G, the cardinal invariant d(G) by

(1.7) d(G):=sup{dG(v):ve V}.1

Thus, although Gx is locally finite, d(Gx) = No •
We say that a graph G has BD (bounded degree) if G satisfies:

(1.8) ¿(G) < Ko-

Let k G N, k > 1 . The full fc-tree Tk is an example of a graph satisfying

(1.8) (d(Tk) = k + 1) yet having a shift system. By definition, Tk = U«6N0^"

where V„ = (Z"'Z¿ is the set of all sequences (i'o, ... , in-i) of length n with

ij e Zk , j — 0, ... , n-l. Let u -< v stand for " u is an initial segment of v "

for u, v e Tk; then the neighborhood relation A in Tk is given for u e V„ ,

v e Vm by
uNv : <& \n - m\ = l&(u -< v or v -< u).

Obviously, V = (K)neNQ is a shift system for Tk, and d(Tk) = k + 1.
Notice, however, that here \V„\ = k". Anticipating the condition SEG, we

present next an example of G satisfying (1.8) with a slow-growing shift system.

Example 2. Let k e N, k > 1.  Define by induction /„, q„, rn, e„ e N0 for
« G N0 by

(l9) ln = Qn'k + r„,        0<rn<k;

e„ = 0    if rn = 0,        e„ = 1     if rn > 0 ;

ln+\ = (qn + e„)(k+ 1).

We define the graph G^ as follows:
Let V = (F„)„€No be a sequence of mutually disjoint finite sets satisfying

\V„\ = ln (n e N0). For each n let P„ be a partition of V„ into #„ + e„
nonempty sets, all but possibly one of cardinality k, where the exceptional set

exists iff £„ = 1 and then it is of cardinality rn. Let Qn+i be a partition

of Vn+i into q„ + en sets of cardinality k + 1, and let fn+x : Qn+X —► P„ be

a bijection of Qn+X onto P„ . For u e V„ let P„(w) denote the unique set

V QVn, V e P„, satisfying u e V ; and for v e Vn+X let 6„+i(w) denote

the unique set V" ç Vn+X, K" G Qn+X, satisfying deF". We first define an

irreflexive antisymmetric relation A' on the set V := UneN0 *« by

(1-10) uN'v: & 3« G N0[m G fn+x(Qn+i(v))].

1 If .4 is a set of cardinal numbers, sup y4 is the least cardinal m satisfying a < m for all

a e A . For (1.7) to make sense in general the axiom of choice AC is required, but if F is a

well-ordered set—in particular, if V is countable— AC is not needed.
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The graph G^' = ( V, A) with the set of vertices V is obtained by defining

the neighbourhood relation A by

(1.11) uNv: <=> uN'v or vN'u,

where A' is given by (1.10).
One readily checks that if vo is the only member of Vq , then

A,0 = F1=/f1(F0).

Let n e N and let v e V„ . Then we have

Nv=fn(Qn(v))Uf-+\(Pn(v)).

As f„(Qn(v)) ç F„_,, f-+\(?n(v)) ç Vn+X and

\fn(Qn(v))\<k, \f-+\(Pn(v))\ = k+l

we see that V is indeed a shift system for G2 ' and that dG(v) < 2k + 1. As

dG(v) = 2k + 1 whenever \f„(Qn(v))\ - k we have

(1.12) d(G{2k)) = 2k+l.

We show that the sequences (qn)neN0. (ln)nen0 are increasing sequences of

integers. Moreover, setting

(1-13) «:-l.ti

both sequences are approximately geometric sequences with quotient g.

Indeed by (1.9) we have /o = 1, qo — 0, lx - k + 1, qx = 1 (as & > 1), and
also

,. ... l„ = n(k+l),       qn = r„ = n (« = 1, ...,k- 1),

1 •    j 4 = Â:(Â:+1),       ?Jt = fc+l.

Assume n > k and q„> n . Then by (1.9)

/« = Qnk + rn<qnk + k < qnk + qn = qn(k + 1) < ln+x < qn+xk + k       (n> k).

Hence

(1-15) ln<ln+l,      Qn<Qn+l (« G N0).

Dividing through q„k the inequalities

qn(k+ l)<qn+xk + k,     q„+ik < (qn + l)(k + I)

we obtain, by (1.13),

(1.16) g--<q-^<(l + -)g
Qn Qn \ Qn)

so that by (1.15) and (1.13) we have lim^oo &*»• = 1 + ¿,

As by (1.9) ä^J-(l - j^j) = ^¡- < ^ti< 2£LLL±i = «a±i + JL > we also have by

(1.15) lim„^oo '-ff- = 1 + ¿ . It thus follows that

(1.17) lim/yn = l + i.
n—oo K
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Hence, putting

bn =    £   h
0<j<n

we have (see Proposition A, Appendix)

(1.18) lim ¿y* = 1 + r-
n-»oo K

Remark 1.3. Remark 1.1 holds also for Example 2: If C is any set satisfying

|C| > 2 and we let X := VC and M\X -* X satisfies (1.6), then (1.5) holds

for every 8 : No —► C. In particular, M does not have the p2p.

Now we define precisely the condition SEG (subexponential-growth). Let

G = (V, N) be a graph, u,veV,neN0.A trail of length n from u to v
(in G) is a sequence (v0, ... ,v„) of length n + 1 satisfying u0 = u, u„ = u,

and v¡Nvi+x for /' G Z„ . The distance p(u, v) between u and v (in G) is by

definition the smallest n for which a trail of length n from « to v exists. (It
is undefined if no trail from u to v exists.) G is connected if for any m, i> g V
a trail from u to v exists. When G is connected, /? is a metric on F, taking
values in No.

For any v e V and « G No we let S(v, n)   (B(v, n)) denote the sphere

(the closed ball) of radius n centered at v and let s(v, n)  (b(v , n)) denote

its cardinality. That is,

(1.19)
S(v, n) :- {u G V: p(v, u) = n),    B(v, n) := {u e V: p(v, u) < n},

s(v, n) := \S(v , n)\, b(v , n) := \B(v , n)\.

As S(v, 1) = Nv we have s(v , 1) = dG(v). Also, for all « G No :

(1.20) B(v,n)=   Q  S(v,k),        b(v,n)=   £  s(v , k) ;
0<k<n 0<k<n

p(v ,w) = k=> B(v, n) ç B(w, n + k) => b(v , n) < b(w, n + k)

(v,weV,n,ke N0).

Obviously S(v, 0) = {v} , S(v, n + l) ç \JweS(v,n)S(w > l) '> and for " > °

and w e S(v , n), S(w, 1) n S(v , n - 1) ^ 0. Thus, J5(v , «) is a finite set
when G is locally finite.

Now assume that G has BD, i.e., (1.8) holds. Let d = d(G) and let v 6 F.
Then 5(v, 0) = 1, s(v, 1) < d, and for n > 1 j(v, «) < (d - l)s(v , n - 1).
Thus, by (1.20), for d > 2

(1.22) ¿>(«,/i)< 1+^(t/^!_)2~ !        (rf = ^(G)>2,«>0).

Equality in (1.22) holds if d = k + 1, G = Tk , the full /c-tree, and v is the
root of Tk. By (1.22):

(1.23) I < b(v, n) < 3(d - l)n       (d = d(G) > 2, n > 0).

Define the growth g(v, G) G R U {cx>} of G at v for any vertex v of a
locally finite graph G by

(1.24) g(v, G) :=limsup(b(v , n))l/n.
H6N
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If d(G) = d, 2<deN, then by (1.23) 1 < g(v, G) < d - 1.
We notice that g(v , G) = 1 when d < 2 and that g(v ,Tk) = k for the full

fc-tree Tk , k > 2.
By (1.20) and Proposition A (Appendix), s(v, n) may be substituted for

b(v, n) in (1.24) whenever b(v, n) is a strictly increasing sequence, i.e., when-
ever v lies in an infinite connected component of G.

Proposition 1.4. Let G - (V, N) be a locally finite and connected graph, and
let v,w eV. Then g(v , G) = g(w, G).

Proof. G is connected and so let p(v , w) = k e N0 . By (1.21), b(v, n)ll" <
b(w,n + k){l" = (b(w, n + fc)i/(»+*))0+*/») So that

g(v,G) = limsupb(v,n)l/n < limsup(è(w, „)>/»)(!+*/»)

= limsupè('U), ny'n = g(w, G).

Similarly, g(w, G) < g(v, G).   G

Definition 1.5. Let G = (V, N) be a locally finite connected graph G. Then
the growth g(G) of G is defined by

g(G):=g(v,G)

where v is any vertex of V.

G has subexponential growth (SEG) iff g(G) = 1.

Remark 1.6. (i) The graph Gi of Example 1 has SEG, as with V0 = {vo} we

have b(v0, n) - Ylo<j<n\.^r\ ^ (n + ^)2 • By Remark 1.2 Gx does not have
BD.

(ii) The graph G(2k) of Example 2 has BD, as d(G{2k)) = 2k + 1 by (1.12).

It does not have SEG, as by (1.18) 1 < g(G2k)) = 1 + ¿ .

Theorem 1. Let G be a connected graph of bounded degree and ofsubexponential
growth. Then G has the period-two-property.

It is readily checked that the p2p holds whenever d(G) < 2. Thus, Theorem

1 is a consequence of

Theorem 2. Let G be a connected graph satisfying 3 < d(G) < No, and let
d G N be the greatest even integer satisfying d < d(G). If

(1-25) g(G)<l + ld,

then G has the period-two-property.

Theorem 2 is proved in §4.

Corollary 1.7. Let V be a nonempty subset of the k-dimensional Euclidean space
Rk ; and for u,veRk let pk(u,v) denote the Euclidean distance between u

and v . Let h, r eR,0 < h, r; and assume

(1.26) 2h<pk(u,v)       (u,veV).

Let G = (V, A), where NCVxV is defined by

uNv: &0< pk(u, v) < r       (u,veV).

Then G has the p2p.
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Proof. We may assume that G is connected, as G has the p2p iff so do all
its connected components. For u e Rk, s > 0 let Bk(u,s) ç Rk denote

the Euclidean ball centered at u of radius s. Then for v e V, n e N, the

set B(v, n) ç V defined by (1.19) satisfies B(v, n) ç Bk(v, nr) n V and,
in particular, Nv ç Bk(v, r). By (1.26) we have Bk(u, h) n V = {u} and

Bk(u, h) D Bk(v, h) = 0 for all ii,t)EF, u±v . Hence for any u e Rk and

positive s, \Bk(u, s)nV\ < (I + j¡)k , this being the ratio of the volumes of balls

of radii s + h and h in Rk . Thus, if v e V, dG(v) = \(Bk(v ,r)nV)\ {v}\ <
(I + j¡)k and so G satisfies BD; similarly, for n e N, b(v, n) - \B(v, n)\ <

\Bk(v ,rn)nV\<(l + f)k, whence G satisfies SEG. By Theorem 1 G has the

p2p.    D

Let C be any set with at least two elements, let G = ( V, A) be a locally

finite connected graph, let X = VC be the set of C-configurations of G, and let

M: X -> X. Let us say that G has the M-p2p if M has the p2p. By Remarks
1.1, 1.3, and 1.6, Examples 1 and 2 present Gx with SEG but not BD and

G2 ' with BD but not SEG that fail to have the M-p2p for any M satisfying
(1.6). Theorem 1 provides that when a connected graph G has BD and SEG, G

has the M-p2p for the majority operator M defined in (1.1)—which satisfies
(1.6). An interesting problem we leave open is: find the extent of locally defined

operators M satisfying ( 1.6) for which every connected graph with BD and SEG

has the M-p2p. Here we present just one more such example—the /^-majority
operator M^ , introduced in [PS], which we now precisely define.

Let k e N, k > 1 ; and let C = Zk = {0, I, ... ,k-l) be the set of colors.
Given a graph G = (V, A), let X = vC denote the set of all C-configurations

x : V -* Zfc of G. The mapping M^ : X —* X is defined by putting for each
v g V, x e X, i eZk:

(M^x)(v) = i: *> V; G Zk[dv(x, j) < dv(x, i)&

( 1 -27) (dv(x, j) = dv(x, i) =» i < j)].

Thus, (M^x)^) is the first among the colors in 7Lk that jc applies most

in At,.
In [PS] the A/(fc)-p2p is established for any finite graph G. We generalize it

as

Theorem 3. Let G be a connected graph, with bounded degree and subexponen-

tial growth. Then G has the M^-p2p for every k e N.

Theorem 3 follows from:

Theorem 4. Let G be a connected graph, and let d = d(G) e N, d > 1. If

( 2   \l/k
(1.28) g(G) <^l + ̂ -TJ      ,

then G has the M^-p2p.

Theorem 4 is proved in §5.
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We are grateful to Ron Holzman for his careful reading and critical remarks
that improved an earlier version of the paper.

2. A CRITERION FOR THE p2p

Let X be a nonempty set, and let M : X —► X be an arbitrary self-mapping

of X. Let P be a partially ordered set. A mapping b: X x X -+ P is called a

p2p-form for M in P iff the following three conditions hold for all x, y G X :

(2.0) b(x,y) = b(y,x),

(2.1) b(x, v) < b(x, Mx),

(2.2) b(x, y) = b(x, Mx) ^ y = Mx.

We say that M has the period-two-property (p2p) iff for every x e X and

any positive integer k :

(2.3) Mkx = x^- M2x = x.

Theorem 2.0. Let M be a self-mapping of a set X. The following are equivalent:

(a) M has the p2p.
(b) There exists a partial order P and a p2p form b: X x X —> P for M

in P.

Proof, (a) => (b) : Let P be the set P(X*) of all subsets of a set X* properly

containing X ordered by inverse inclusion:

B<C    iff    CCB       (B,CCX*).

Thus X* < B for any B ç X.
We define b: X x X -» P as follows:

b(x, Mx) = b(Mx,x):={Mnx: n e N0}    (= {x, Mx, M2x, ...}),

b(x, y) :— X*   if y # Mx and x ^ My.

Then b satisfies (2.0) and (2.1). Also, b satisfies (2.2) iff (2.3) holds. Thus, if
M has the p2p, then b is a p2p form for Af in P.

(b) =► (a) : Assume (b), and let b: X x X -* P be a p2p form for Af in P,
where P is some partial order. By (2.0), (2.1)

b(x, Mx) < b(Mx, M2x) <      < b(Mk~lx, Mkx)

for every positive integer k.
Assume that for some positive integer k  Mkx = x holds. Then by (2.0)

b(x, Mx) < b(Mk~xx, x) = b(x, Mk-Xx).

As by (2.1) b(x, Mk~lx) < b(x, Mx), we have

b(x, Mx) = b(Mx, M2x) = • • • = b{Mk~lx, x).

Hence, in particular, b(x, Mx) - b(Mx, M2x), so by equality (2.0) again,

b(Mx, M2x) = b(Mx, x). But then, by (2.3), Af2x = x. Thus Af has the
p2p, i.e., (a) holds.   D

Remark. The p2p for a variety of discrete time finite dynamical systems is
established often using a mapping E from the configuration space X of the

system into the real numbers, whose time-behaviour is monotone (see, e.g.,
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[GFP], [GM], [GOd], [OR]). A p2p form b for Af in P yields such a function
by setting E(x) := b(x, Mx).

3. A SUFFICIENT CONDITION FOR P2P IN SYMMETRIC NETWORKS

In this section we utilize the criterion for p2p obtained in §2 to obtain useful
sufficient conditions for locally defined operators on configuration spaces over

symmetric networks to have the p2p.
By a network we shall mean a pair G = (V, N), where F is a nonempty

set (of vertices or nodes), and A: V x V —> R is any V x V real matrix. The

network is called symmetric if

(3.0) N(u,v) = N(v, u)       (u,veV).

A graph G as defined in § 1 is a special case of a symmetric network, if we

interpret its neighbourhood relation as a characteristic function, namely, the

function A: V x V —► {0, 1} satisfying N(u, v) = 1 iff u and v are neigh-

bours in G.
Let G — (V, N) be an arbitrary network, and let C be a nonempty set.

The set X :=VC is called again the set of C-configurations or C-colouring of

G. Given a system (Mv)veV of functions Aft,: X —► C (referred to as local

operators), a unique operator Af : X —► X is defined by

(3.1) Mx(v):=Mvx       (xeX,v eV).

Then we say that Af is locally defined by the system of local operators (Mv)v€y .

A useful sufficient condition for a locally defined Af : X -+ X to have the p2p

is given in the next theorem.

Theorem 3.0. Let V, C be nonempty sets, and let X = VC. Let b: XxX -* R;
and for each v e V let 6„:IxC->R, Mv: X —> C be given so that:

(bO) b(x, y) = b(y, x)   (x,yeX).
(bl) b(x, y) = YiV€Vbv(x, y(v)), where the sum is absolutely convergent

(x,yeX).
(bl) bv(x, c) < bv(x, Mvx) (veV,xeX,ceC).
(b3) bv(x, c) - bv(x, Mvx) => c = Mvx  (v e V, x e X, c e C).

Let Af : X -► X be defined by

(3.1) Mx(v):=Mvx      (xeX,veV).

Then M has the p2p.

Proof. By Theorem 2.0 it is enough to show that b is a p2p form for Af in

R, i.e., b satisfies (2.0), (2.1), and (2.2).
Indeed (2.0) holds by (bO).
Let x, y e X. By (bl) and (3.1) we have

(3.2) b(x, Mx)-b(x,y) = Y^{bv(x, Mvx)-bv(x,y(v)))       (x, y e X)

and the sum on the right is absolutely convergent.

By (b2) bv(x, Mvx) - bv(x, y(v)) > 0 for all v e V, so that by (3.2)
b(x,y) < b(x, Mx), i.e., (2.1) holds.

Assume b(x, y) = b(x, Mx). Then the sum on the right vanishes in (3.2).

As all its terms are nonnegative, we have bv(x, y(v)) = bv(x, Mvx)  for all
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v G V. Hence, by (b3) and (3.1), y(v) = Mvx = Mx(v) for all v e V, i.e.,
y = Afx . Thus, also (2.2) holds.   D

In practice, special instances of Theorem 3.0 with some more details on the

structure of the function b are useful. We first formulate one that is useful in

handling the case |C| = 2 and Af the majority operator, defined in (1.1).

Theorem 3.1. Let G = (V, B) be a network, C ç R, and X = VC. For each
v G V let Mv: X —> C be given, and let M : X -* X be defined by

(3.1) Mx(v) := Mv(x)       (xeX,veV).

Assume that B:VxV^R satisfies
(BO) B(u,v) = B(v,u)   (u,veV).

(Bl) E{u,v)evxv\x(u)\\B{u,v)\\y{v)\<oo  (x,yeX).

Further let

b(x,y)=     £     x(u)B(u, v)y(v) (x,yeX),
(3.3) iu'v)eV*V

bv(x, c) = c ^2 x(u)B(u, v)      (v e V, x e X, c e C).

If
(b2) bv(x, c) < bv(x, Mvx) (veV,xeX,ceC).
(b3) bv(x, c) = bv(x, Af^x) => c — Mvx  (veV,xeX,ceC). Then M

has the p2p.

Notice that if C ç R is bounded—in particular, if C is finite—then (Bl) is

a consequence of

(B'l)   2Z{u,v)€VxV\B(u,v)\<œ.

(In fact, (Bl) is equivalent to (B'l) when C has a nonzero number.)   The

proof of Theorem 2 in §4 makes use of Theorem 3.1.   Now we formulate a

slight generalization used to prove Theorem 4 in §5.

Theorem 3.2. Let G = (V, B) be a network, C ç R, and X = VC. For each
v g V let Mv: X -> C be given and let M : X -> X be defined by

(3.1) Mx(v) := Mvx      (x e X, v e V).

Let B: V x V — R, K: C x C — R satisfy
(BKO) B(u, v) = B(v, u), K(c', c") = K(c", c')      (u, v e V; d, c" e C).

(BK1) ÏZ{u,v)evxv\m\\B(u,v)\\K(x(u),y(v))\\y(v)\<œ    (x, y e X).

Further let

b(x,y):=      £     x(u)B(u,v)K(x(u),y(v))y(v)       (x, y e X),

,34n (u,v)evxv

bv(x, c):=c^2x(u)B(u, v)K(x(u), c)       (v e V, x e X, c e C).

If
(b2) bv(x, c) < bv(x, Mvx)  (veV,xeX,ceC).
(b3) bv (x, c) = bv (x, Mvx) =$■ c = Mvx  (veV,xeX,ceC).

Then M has the p2p.



INFINITE GRAPHS 1661

Again, if C ç R is bounded and K is a bounded function, then (BK1) is a
consequence of (B' 1 ).

4. Proof of Theorem 2

Let G = (V, A') be a connected graph, where A' is a symmetric irreflexive
relation on V, i.e., satisfies (Nl) and (N2) (see §1). Let 3 < d(G') e N and d e
N be the greatest even integer satisfying d < d(G'), and assume g(G') < 1 +1.

Let C = {-1, 1}, and let Af denote the majority operator on X := VC as
defined in (1.1). We shall define a network G = (V, B) so that the assumptions

of Theorem 3.1 hold, whence we conclude that Af has the p2p. First some
preliminaries.

Fix a positive q eR satisfying

2 1

As 1 < g(G'), q satisfies 0 < q < 1.
Fix Vq e V, and for any v e V put

(4.1) n(v):=p(v0, v)

where p(u,v) is the distance in G between u and v. Further let S„ :=

S(v0, n) be the sphere of radius n centered at v0 (see (1.19)) so that n(v) = n

iff v G Sn ; and let sn := \S„\.
Define a positive number qv for v e V by

(4.2) qv := q"^.

First we show that

(4.3) ¿2ti=Y,s"Q2n<™-
v€V n€N0

As V = UneNo $n is a disjoint union, the equality in (4.3) holds, and we only

need to prove the inequality, i.e. the convergence of the series of nonnegative

terms En€N0s^2"- Indeed> (SnQ2")l/n = Q1s)ln, hence by (4.0), (1.24), and

Definition 1.5

( Y'"
hmsup^2")1/" = ?2limsupsy" < ?2limsup     Y] j,        = q2g(G') < 1.

«€N «6N K6N       yQ^H     J

The inequality in (4.3) follows.
We use dv as a brief notation for the degree of v e V in G . Thus:

(4.4) Nv:={ueV:uN'v},       dv:=\Nv\.

By the choice of d we have

dv < d + 1     if dv is odd    .
(v e V).

dv < d + 2   if ¿t, is even

Let v e V and let n = n(v). Then obviously Nv ç S„-X L)SnUSn+x (where

by definition S-X = 0), so u e Nv implies n(u) e {n - I, n, n + 1} .
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Define mv : Nv -> R by mvu := q^lqu so that mvu = q"(u)-" e {q~l, 1, q}

for any u e Nv .

For y4 ç Nv put

(4.5) m„;4:=^ra„M,        wvA := mvA-mv(Nv - A).

u€A

mv and «;„ respect cardinality in Nv ; that is,

(4.6) \A\ < \B\ => mvA < mvB&wvA < wvB       (A,B ç Nv).

We prove (4.6). First let \A\ = j, \B\ = j + 1 . Then

mvA < jq~l,        (j +l)q < mvB.

First assume j < dv/2.  In this case mvA < mvB follows from jq~x <

v+i = l ~ 7+T(j +l)q, i.e., from -fa = 1 - -fa < q2. Indeed, by (4.0),

X-dJY+-i<ql

and | is the largest integer smaller than ^p-, so that j < dv /2 implies j <$,

whence i - fa < i - ^ < qK
Now assume that j > dv/2. Then \B\ = j + 1 > dv/2 and so ¿jc :=

Nv - B satisfies \BC\ = dv - (j + 1) < dv/2. As Ac := Nv - A satisfies

\AC\ = dv - j = |2?c| + 1 we have by the previous case mvBc < mvAc. By

mvNv = mvB + mvBc = mvA + mvAc, mvA < mvB follows.

Thus we see that \A\ < \B\ implies mvA < mvB for all A, B ç Nv . wvA <

wvB readily follows, as \A\ < \B\ => \BC\ < \AC\ and so also wvA = mvA -
mvAc < mvB - mvBc = wvB . (4.6) is established.

We also obviously have

(4.7) wv(Nv -A) = -wvA       (A C Nv).

Proposition 4.0. Let v e V. Then:

(1) ACNV,\A\< \dv => wvA < 0 < wv(Nv - A).
(2) There is a positive number 8V > 0 such that if A, B, C ç Nv satisfy

\B\ < \A\ = \dv < \C\ then

(4.8) wvB < -8V < wvA < 8V < wvC.

Proof. (1) follows from (4.6) and (4.7).
(2) is of relevance only when dv is even and follows similarly. (Notice that

\A\ — \dv implies | A„ - A\ = \dv , so by (4.7) the set of numbers {wvA: \A\ =

jdv} is symmetric around zero.)
Let us define A: V x V -► R by

{1,     uN'v,

3V ,    u = v and dv is even,

0,     otherwise.

Thus, A is symmetric and differs from the characteristic function of the sym-

metric relation A' yielding the graph G by introducing the diagonal positive

entries 8V satisfying (4.8) for those v e V where dv is even.
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Define the network G = (V, B) by setting

(4.10) B(u,v):=quN(u,v)qv       (u,veV).

Then B is symmetric, so (BO) holds.
As C = {-1, 1} , (Bl) follows once we establish (B'l). Notice first that for

each v e V we have Y,u€N qu < QvQ~ldv < qvQ~l(d + 2). Also, whenever dv

is even, 3V < wvNv — mvNv < q~ldv < q~l(d + 2). Hence by (4.3),

£      \B(u,v)\<YJ\Q-\d + 2)q2v+qvYJQu\
(u,v)€VxV v€V  \ ueNv      j

<2q-\d + 2)YJQl<^-
vev

Thus, (B'l) holds.
As in § 1 we put for jt : F —► C, v e V, c eC,

(4.11) Nv(x, c):={ue Nv: x(u) = c},       dv(x, c) := \Nv(x, c)\

and define Mv: X —> C by

(4 12) Mx-lC X\*v<dv{x,c),
[       ' vX-\x(v)   ifdv(x,l) = dv(x,-l).

Thus, Af : X —> X defined by (3.1) is the majority operator.
For x,y e X, v g V, c e C defined b(x, y) e R and bv(x, c) e R by

(3.3). Then we have

f bv(x, c) = q2wvNv(x, c) if dv is odd,

\ bv(x, c) = q2(wvNv(x, c) + cx(v)8v)   if dv is even.

Indeed, by (3.3), (4.4), (4.9), (4.10),

bv(x, c) = c^2 x(u)B(u,v) = qv    qvcx(v)N(v , v) + ^ (x(u)c)Qu

uev \ ueNv J

= q2(cx(v)N(v, v) + mvNv(x, c) - mvNv(x, -c))

= q2(cx(v)N(v , v) + wvNv(x, c)).

Hence (4.13) follows from (4.9).
(b2) and (b3) follow from

(4.14) bv(x, -Mvx) < 0< bv(x, Mvx)       (v e V, x e X).

To prove (4.14), put c = Mvx , A = Nv(x, c). Then by (4.12), \NV - A\ <

\dv < \A\.
First assume that dv is odd. Then we have \NV - A\ < \dv < \A\. Hence by

Proposition 4.0(1) and Nv - A = Nv(x, -c) we have

wvNv(x, -c) < 0 < wvNv(x, c),

whence (4.14) follows by (4.13).
Next assume that dv is even, and let w := wvNv(x, c), so by (4.13) and

(4.7),
bv(x, c) = q2(w + cx(v)8v),        bv(x, -c) = -bv(x, c).
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Thus, (4.14) follows once we show w + cx(v)8v > 0. Indeed, if \Nv(x, c)\ >

\dv , then by (4.8) w = wvNv(x, c) > 3V > 0 and so w+cx(v)8v > w-3v > 0;

and if \Nv(x, c)\ - \dv , then c = x(v) by (4.12), so w + cx(v)3v = w + 3V
and again by (4.8) w + 8V > 0.

5. Proof of Theorem 4

Let k e N, k > 1, and let G = (V, N) be a connected graph satisfying

d:=d(G)eN,d> 1, and

/ 2    \l/k
(1.28) g(G)<(l + j-¡-J     .

We consider G as a network (so that N: V x V ^> {0, 1}  is a symmetric

function) and apply Theorem 3.2 to show that G has the Af (t)-p2p (see ( 1.27)).

By (1.28) g(G) < (^±i)2/(2<fc-i)+2). Choose a > 2 so that

,-      /¿+l\2/(a(*-1)+2)

S{G) < (d^í)

still holds, and fix 0 < q < 1 satisfying

(5-0) l^TTJ        <q<gWY
The set of k colours C ç R is defined by

(5.1) C:={<r'/2:zGZ,}.

so /1-> qa'/2 is an order-reversing mapping of Zk onto C (as 0 < q < 1). We

put further X := VC, and for v e V, x e X, and c e C put A„ := {u e

V: N(u,v) - 1} , dv:=\Nv\ and define Nv(x, c), dv(x,c) by (4.11).
Let us put Ci := qai<2 for i e Zk sojthat C = {c,: i e 1k), and guided by

(1.27) let us define the local operator Af„ : X -» C for each v G V by

Af„(x) = c, : <*> V; G Zk[dv(x, Cj) < dv(x, c,)&

(5.2) (dv(x, Cj) =dv(x, d) =*> i < j)].

Finally, M: X -* X is defined by

(5.3) Mx(v) := Mv(x).

To establish Theorem 4 we need to show that Af has the p2p. By Theorem

3.2 it suffices to define B:V xV ^R and K: C x C ^ R so that (BKO),
(BK1) hold and so that b, bv defined in (3.4) satisfy (b2) and (b3).

Choose vq g V, and define

(5.4) n(v):=p(v0,v),    qv := q»™       (veV).

Define B: V x V ^R, K: C x C -+{0, 1} by

(5.5)
B(u, v) := quN(u, v)qv ,    K(c, c') = 3(c, c')       (u, v e V; c, c' e C)

where 8(c, c') — 1 if c = d , 8(c, d) = 0 otherwise.
By (5.5), (BKO) holds (as A is symmetric).
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As C is finite, K(c,d) e {0, 1}, (BK1) follows from (B'l). By (5.0)
q2g(G) < 1, so by (5.4), Definition 1.5, and (5.0) \Zvevql < oo (see (4.3)).
Hence, we have again 2^(U,v)evxv \R(U » t>)| < oo. (See (4.10) and the following

lines, §4.) Thus (B'l) and, hence, (BK1) hold.
Substituting (5.5) into (3.4) we obtain

b(x,y)=      Yl     x(u)quN(u,v)3(x(u),y(v))qvy(v)       (x,yeX),

(u,v)evxv

bv(x, c) = cqv ^2 x(u)quN(u, v)3(x(u), c)      (v e V, x e X, c e C).

u€V

We notice that with Nv(x, c), dv(x, c) defined in (4.11) (or (1.0)) we have

A(m, v)8(x(u), c) = 1 or 0 accordingly as « G Nv(x, c) or u £ Nv(x, c).

Thus, for any v e V, x e X, c eC,

bv(x,c) = c2qv     ^2    Qu-
ueK(x,c)

Also, for u e Nv

QQv <Qu< Q~lQv

Hence

(5.6) c2qq2dv(x, c) < bv(x, c) < c2q~1q2dv(x, c).

Let us put n := n(v) so that qv = q" , and by (5.1) we may put c2 - qai for

some integer 0 < i < k. Then (5.6) gives

(5.7) q2n+ai+ldv(x, qai'2) < bv(x, qai'2) < q2n+ai-xdv(x, qai'2).

Claim 1. Let c,d e C, c < d ; and let 0 < m = dv(x, c) = dv(x, d). Then
bv(x, c) <bv(x, d).

Indeed we may assume c = q°"l2, d = qaj/2 where 0 < j < i < k. Then by

(5.7)
bv(x, c) < q2n+a'-xm < q2n+aj+lm < bv(x, d)

as required in Claim 1.

Claim 2. Let c, d e C and let 0 < m = dv(x, c) < m! — dv(x, d).  Then
bv(x, c) < bv(x, d).

Indeed, by m + 1 < m' and (5.7) we have for c - qai/2, d = qaj/2 :

(5.8) bv(x,c)<q2n+ai-lm<q2n-lm,

(5.9) Q2n+a(k-l)+l(m + j.) < q2n+a(k-l)+lm, < ^«+«7+1^ < bv(x , c').

Now 2m + 1 < m + m' < dv < d, so m < d - (m + I). Hence:

m(d + 1) = md + m < md + d - (m + 1) = (m + l)(d - 1).

Thus, by (5.0)

m    < 4—!- < ̂ -')+2.
m+l-d+1

Multiplying by (m + l)q2n~x we obtain

(5.10) q2"-lm<q2n+a{k-l)+l(m+l);

combining (5.8), (5.9), and (5.10) we conclude bv(x, c) < bv(x, d), as Claim
2 asserts.

We conclude from Claims 1 and 2:



1666 GADI MORAN

Corollary.  bv(x, c) < bv(x, d) iff

dv(x, c) < dv(x, d)    or    (dv(x, c) = dv(x, c')Scc < d).

Comparing the corollary with (5.2) we conclude

(b2) bv(x, c) < bv(x, Mvx)  (veV,xeX,ceC),

(b3) bv(x, c) = bv(x, Mvx) =*> c = Mvx  (veV,xeX,ceC).

As all assumptions of Theorem 3.2 hold, Af has the p2p.   D

Theorem 4 (hence Theorem 3) is proved.

Appendix

Proposition A. Let a„ > 0 for n e N, än = a\,n, bn = £k,<« a' • bn = b\ln ;

and let 0 < ä,b < oo satisfy ä = limsup„eNän, b = limsup„6Nbn . Then

b — max( 1, ä). In particular, if a„ > 1 for all n, then b = ä.

Proof. As an < b„, we have à < b. Also, as bn > a\ln, ax > 0, we have

1 < liminf„eN¿„ < b. Thus, max(à, 1) < b. For the reverse inequality we

prove:

Claim. Let K satisfy 1 < K and än < K for all large enough n e N. Then

b<K.

Proof of Claim. Assume that 1 < A G N satisfies ä„ < K for all n > N. As
a¡ < Kj for j > A we have for all n > N

bn = bN-X +   ^2   aJ < bN-i +   Y^  KJ-
N<j<n N<j<n

Thus, if L = max(l, b^-i), then

bn<L Y  & = k^t(K"+1 - V< ^ï • K"
0<j<n

and so

whence b < K.   D

b < max(l, a) follows from the claim and completes the proof of Proposi-

tion A.
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