On the period-two-property of the majority operator in infinite graphs
HTML articles powered by AMS MathViewer
- by Gadi Moran
- Trans. Amer. Math. Soc. 347 (1995), 1649-1667
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297535-1
- PDF | Request permission
Abstract:
A self-mapping $M:X \to X$ of a nonempty set $X$ has the Period-Two-Property (p2p) if ${M^2}x = x$ holds for every $M$-periodic point $x \in X$. Let $X$ be the set of all $\{ 0,1\}$-labelings $x:V \to \{ 0,1\}$ of the set of vertices $V$ of a locally finite connected graph $G$. For $x \in X$ let $Mx \in X$ label $v \in V$ by the majority bit that $x$ applies to its neighbors, retaining $\upsilon$’s $x$-label in case of a tie. We show that $M$ has the p2p if there is a finite bound on the degrees in $G$ and $\frac {1} {n}\log {b_n} \to 0$, where ${b_n}$ is the number of $\upsilon \in V$ at a distance at most $n$ from a fixed vertex ${\upsilon _0} \in V$.References
- Eric Goles Chacc, Françoise Fogelman-Soulié, and Didier Pellegrin, Decreasing energy functions as a tool for studying threshold networks, Discrete Appl. Math. 12 (1985), no. 3, 261–277. MR 813974, DOI 10.1016/0166-218X(85)90029-0
- Eric Goles and Servet Martínez, Neural and automata networks, Mathematics and its Applications, vol. 58, Kluwer Academic Publishers Group, Dordrecht, 1990. Dynamical behavior and applications. MR 1047470, DOI 10.1007/978-94-009-0529-0
- E. Goles and J. Olivos, Periodic behaviour of generalized threshold functions, Discrete Math. 30 (1980), no. 2, 187–189. MR 566436, DOI 10.1016/0012-365X(80)90121-1
- Eric Goles and Andrew M. Odlyzko, Decreasing energy functions and lengths of transients for some cellular automata, Complex Systems 2 (1988), no. 5, 501–507. MR 971606
- Gadi Moran, The $r$-majority vote action on $0$-$1$ sequences, Discrete Math. 132 (1994), no. 1-3, 145–174. MR 1297380, DOI 10.1016/0012-365X(94)90236-4
- Gadi Moran, Parametrization for stationary patterns of the $r$-majority operators on $0$-$1$ sequences, Discrete Math. 132 (1994), no. 1-3, 175–195. MR 1297381, DOI 10.1016/0012-365X(94)90237-2
- Andrew M. Odlyzko and Dana J. Randall, On the periods of some graph transformations, Complex Systems 1 (1987), no. 1, 203–209. MR 891521
- Svatopluk Poljak and Miroslav Sûra, On periodical behaviour in societies with symmetric influences, Combinatorica 3 (1983), no. 1, 119–121. MR 716427, DOI 10.1007/BF02579347
- Svatopluk Poljak and Daniel Turzík, On an application of convexity to discrete systems, Discrete Appl. Math. 13 (1986), no. 1, 27–32. MR 829336, DOI 10.1016/0166-218X(86)90066-1
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1649-1667
- MSC: Primary 68R10; Secondary 68Q80, 68Q90, 90C35
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297535-1
- MathSciNet review: 1297535