Some inequalities of algebraic polynomials with nonnegative coefficients

Author:
Weiyu Chen

Journal:
Trans. Amer. Math. Soc. **347** (1995), 2161-2167

MSC:
Primary 41A17

DOI:
https://doi.org/10.1090/S0002-9947-1995-1273483-8

MathSciNet review:
1273483

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let ${S_n}$ be the collection of all algebraic polynomials of degree $\leqslant n$ with nonnegative coefficients. In this paper we discuss the extremal problem \[ \sup \limits _{{p_n}(x) \in {S_n}} \frac {{\int \limits _a^b {{{({{p’}_n}(x))}^2}\omega (x)dx} }} {{\int \limits _a^b {p_n^2(x)\omega (x)dx} }}\] where $\omega (x)$ is a positive and integrable function. This problem is solved completely in the cases \[ ({\text {i}})[a,b] = [ - 1,1],\omega (x) = {(1 - {x^2})^\alpha },\alpha > - 1;\] \[ ({\text {ii}})[a,b) = [0,\infty ),\omega (x) = {x^\alpha }{e^{ - x}},\alpha > - 1;\] \[ ({\text {iii}})(a,b) = ( - \infty ,\infty ),\omega (x) = {e^{ - \alpha {x^2}}},\alpha > 0.\] The second case was solved by Varma for some values of $\alpha$ and by Milovanović completely. We provide a new proof here in this case.

- P. Dörfler,
*New inequalities of Markov type*, SIAM J. Math. Anal.**18**(1987), no. 2, 490–494. MR**876288**, DOI https://doi.org/10.1137/0518039 - P. Dörfler,
*An extremal problem concerning a Markov-type inequality*, SIAM J. Math. Anal.**22**(1991), no. 3, 792–795. MR**1091682**, DOI https://doi.org/10.1137/0522049 - G. G. Lorentz,
*The degree of approximation by polynomials with positive coefficients*, Math. Ann.**151**(1963), 239–251. MR**155135**, DOI https://doi.org/10.1007/BF01398235 - Gradimir V. Milovanović,
*An extremal problem for polynomials with nonnegative coefficients*, Proc. Amer. Math. Soc.**94**(1985), no. 3, 423–426. MR**787886**, DOI https://doi.org/10.1090/S0002-9939-1985-0787886-8 - Gradimir V. Milovanović and Miodrag S. Petković,
*Extremal problems for Lorentz classes of nonnegative polynomials in $L^2$ metric with Jacobi weight*, Proc. Amer. Math. Soc.**102**(1988), no. 2, 283–289. MR**920987**, DOI https://doi.org/10.1090/S0002-9939-1988-0920987-2 - L. Mirsky,
*An inequality of the Markov-Bernstein type for polynomials*, SIAM J. Math. Anal.**14**(1983), no. 5, 1004–1008. MR**711180**, DOI https://doi.org/10.1137/0514079 - John T. Scheick,
*Inequalities for derivatives of polynomials of special type*, J. Approximation Theory**6**(1972), 354–358. MR**342909**, DOI https://doi.org/10.1016/0021-9045%2872%2990041-x - P. Turán,
*Remark on a theorem of Erhard Schmidt*, Mathematica (Cluj)**2(25)**(1960), 373–378. MR**132963** - A. K. Varma,
*Some inequalities of algebraic polynomials having real zeros*, Proc. Amer. Math. Soc.**75**(1979), no. 2, 243–250. MR**532144**, DOI https://doi.org/10.1090/S0002-9939-1979-0532144-7 - A. K. Varma,
*Derivatives of polynomials with positive coefficients*, Proc. Amer. Math. Soc.**83**(1981), no. 1, 107–112. MR**619993**, DOI https://doi.org/10.1090/S0002-9939-1981-0619993-0
---,

*Some inequalities of algebraic polynomials*, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A17

Retrieve articles in all journals with MSC: 41A17

Additional Information

Keywords:
Markov inequality,
nonnegative coefficients

Article copyright:
© Copyright 1995
American Mathematical Society