Some inequalities of algebraic polynomials with nonnegative coefficients
HTML articles powered by AMS MathViewer
- by Weiyu Chen
- Trans. Amer. Math. Soc. 347 (1995), 2161-2167
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273483-8
- PDF | Request permission
Abstract:
Let ${S_n}$ be the collection of all algebraic polynomials of degree $\leqslant n$ with nonnegative coefficients. In this paper we discuss the extremal problem \[ \sup \limits _{{p_n}(x) \in {S_n}} \frac {{\int \limits _a^b {{{({{p’}_n}(x))}^2}\omega (x)dx} }} {{\int \limits _a^b {p_n^2(x)\omega (x)dx} }}\] where $\omega (x)$ is a positive and integrable function. This problem is solved completely in the cases \[ ({\text {i}})[a,b] = [ - 1,1],\omega (x) = {(1 - {x^2})^\alpha },\alpha > - 1;\] \[ ({\text {ii}})[a,b) = [0,\infty ),\omega (x) = {x^\alpha }{e^{ - x}},\alpha > - 1;\] \[ ({\text {iii}})(a,b) = ( - \infty ,\infty ),\omega (x) = {e^{ - \alpha {x^2}}},\alpha > 0.\] The second case was solved by Varma for some values of $\alpha$ and by Milovanović completely. We provide a new proof here in this case.References
- P. Dörfler, New inequalities of Markov type, SIAM J. Math. Anal. 18 (1987), no. 2, 490–494. MR 876288, DOI 10.1137/0518039
- P. Dörfler, An extremal problem concerning a Markov-type inequality, SIAM J. Math. Anal. 22 (1991), no. 3, 792–795. MR 1091682, DOI 10.1137/0522049
- G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239–251. MR 155135, DOI 10.1007/BF01398235
- Gradimir V. Milovanović, An extremal problem for polynomials with nonnegative coefficients, Proc. Amer. Math. Soc. 94 (1985), no. 3, 423–426. MR 787886, DOI 10.1090/S0002-9939-1985-0787886-8
- Gradimir V. Milovanović and Miodrag S. Petković, Extremal problems for Lorentz classes of nonnegative polynomials in $L^2$ metric with Jacobi weight, Proc. Amer. Math. Soc. 102 (1988), no. 2, 283–289. MR 920987, DOI 10.1090/S0002-9939-1988-0920987-2
- L. Mirsky, An inequality of the Markov-Bernstein type for polynomials, SIAM J. Math. Anal. 14 (1983), no. 5, 1004–1008. MR 711180, DOI 10.1137/0514079
- John T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approximation Theory 6 (1972), 354–358. MR 342909, DOI 10.1016/0021-9045(72)90041-x
- P. Turán, Remark on a theorem of Erhard Schmidt, Mathematica (Cluj) 2(25) (1960), 373–378. MR 132963
- A. K. Varma, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc. 75 (1979), no. 2, 243–250. MR 532144, DOI 10.1090/S0002-9939-1979-0532144-7
- A. K. Varma, Derivatives of polynomials with positive coefficients, Proc. Amer. Math. Soc. 83 (1981), no. 1, 107–112. MR 619993, DOI 10.1090/S0002-9939-1981-0619993-0 —, Some inequalities of algebraic polynomials, preprint.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2161-2167
- MSC: Primary 41A17
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273483-8
- MathSciNet review: 1273483