Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif $p$-adique
HTML articles powered by AMS MathViewer
- by Anne-Marie Aubert
- Trans. Amer. Math. Soc. 347 (1995), 2179-2189
- DOI: https://doi.org/10.1090/S0002-9947-1995-1285969-0
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 348 (1996), 4687-4690.
Abstract:
We define an involution on the Grothendieck ring of the category of finite length smooth representations of a $p$-adic algebraic group, which is a direct analogue Curtis-Alvis duality for finite groups of Lie type. This involution commutes with taking the contragredient, with parabolic induction and, up a few twists, with truncation. It also preserves the irreducible representations up to sign.References
- J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive $p$-adic groups, J. Analyse Math. 47 (1986), 180–192. MR 874050, DOI 10.1007/BF02792538 J.N. Bernstein, P. Deligne, D. Kazhdan et M.-F. Vignéras, Représentations des groupes réductifs sur un corps local, Travaux en cours, Hermann, Paris, 1984.
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307 W. Casselman, Introduction to the theory of admissible representations of $p$-adic reductive groups, preprint.
- Charles W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62 (1980), no. 2, 320–332. MR 563231, DOI 10.1016/0021-8693(80)90185-4
- Pierre Deligne and George Lusztig, Duality for representations of a reductive group over a finite field, J. Algebra 74 (1982), no. 1, 284–291. MR 644236, DOI 10.1016/0021-8693(82)90023-0
- Shin-ichi Kato, Duality for representations of a Hecke algebra, Proc. Amer. Math. Soc. 119 (1993), no. 3, 941–946. MR 1215028, DOI 10.1090/S0002-9939-1993-1215028-8 K. Procter, The Zelevinski duality conjecture for ${\mathbf {G}}{{\mathbf {L}}_n}$, Thesis, King’s College, London, 1994.
- François Rodier, Sur les représentations non ramifiées des groupes réductifs $p$-adiques; l’exemple de $\textrm {GSp}(4)$, Bull. Soc. Math. France 116 (1988), no. 1, 15–42 (French, with English summary). MR 946277, DOI 10.24033/bsmf.2088 A. Zelevinski, Induced representations of reductive $p$-adic groups II, Ann. Sci. Ecole Norm. Sup. 13 (1980), 154-210.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2179-2189
- MSC: Primary 22E50; Secondary 20G05, 20G25, 20G40
- DOI: https://doi.org/10.1090/S0002-9947-1995-1285969-0
- MathSciNet review: 1285969