THE REGIONALLY PROXIMAL RELATION

JOSEPH AUSLANDER, DAVID B. ELLIS, AND ROBERT ELLIS

Abstract. Sufficient conditions for the regionally proximal relation $Q(X)$ of a minimal flow to be an equivalence relation are obtained in terms of the group $\mathcal{G}(X)$ of the flow and various groups which depend only on the acting group T.

Introduction

One of the first problems in topological dynamics was to characterize the equicontinuous structure relation $S(X)$ of a flow (X, T); i.e. to find the smallest closed equivalence relation, $S(X)$ on (X, T), such that $(X/S, T)$ is equicontinuous. A natural candidate for S is the so-called regionally proximal relation $Q(X)$ (see below for the definition). Now Q turns out to be closed, invariant, and reflexive, but not necessarily transitive. The problem was then to find conditions under which Q was an equivalence relation. Starting with Veech [V], various authors, including MacMahon [M], Ellis-Keynes [EK], came up with various sufficient conditions for Q to be an equivalence relation.

In this paper we give a sufficient condition in terms of the group of the flow (X, T), which generalizes most of the ones previously adduced (see 1.12). These groups, introduced in [El], have begun to play a fundamental role in topological dynamics in that many dynamical properties of flows may be characterized using them. Indeed 1.10, the principal result of this paper, may be viewed as saying that $Q(X)$ is an equivalence relation if $E \subset G'(X)$ (see 1.12), a statement which refers only to the group $\mathcal{G}(X)$ of the flow (X, T) and certain groups G' and E which depend only on the acting group T.

The authors would like to thank Daniel Penazzi for many helpful discussions during the preparation of this paper.

We begin by recalling the definition of the regionally proximal relation Q.

1.1. Definition. Let (X, T) be a flow. We define the regionally proximal relation $Q(X) \subset X \times X$ by

$$Q(X) = \{(x, y) | \text{there exist } x_i \to x, y_i \to y, \text{ and } t_i \in T \text{ such that } \lim x_i t_i = \lim y_i t_i \}.$$

It is easily checked that $Q(X)$ is symmetric, closed, and T-invariant. Moreover $Q(X)$ is trivial if and only if the flow (X, T) is equicontinuous.

Received by the editors August 8, 1993; originally communicated to the Proceedings of the AMS by Barbara L. Keyfitz.

1991 Mathematics Subject Classification. Primary 54H20.

©1995 American Mathematical Society
0002-9947/95 $1.00 + .25 per page

2139
1.2. **Notation.** Let M be a fixed minimal right ideal in βT. We will write

$$J = \{v \in M \mid v^2 = v\} \quad \text{and} \quad G = Mu,$$

where $u \in J$ is fixed. Then (M, u) is a universal pointed minimal T-flow; that is, given a minimal flow (X, T) with base point $x_0 = x_0u$, the map

$$p \to x_0p : M \to X$$

is a homomorphism of flows. We will write Q for the regionally proximal relation $Q(M)$ and

$$Q[p] = \{q \in M \mid (p, q) \in Q\}.$$

Note that G is a group which we equip with the τ-topology. Recall that if $K \subset G$, then its closure in this topology is given by

$$\text{cls}_\tau K = (K \circ u) \cap G.$$

1.3. **Lemma.** Let $p \in M$ and $(q_1, q_2) \in Q$. Then $(pq_1, pq_2) \in Q$.

Proof. The map $q \to pq$ from $M \to M$ is a flow automorphism.

1.4. **Lemma.** Let (X, T) be a minimal flow with base point $x_0 = x_0u$. Let $(x, y) \in Q(X)$ with $x, y \in Mw$, where $w \in J$. Suppose that $p \in Mw$ with $x_0p = x$. Then there exists $q \in Mw$ such that $x_0q = y$ and $(p, q) \in Q$.

Proof. It is well known (see [E2]) that there exist $(p_0, q_0) \in Q$ such that $x_0p_0 = x_0p$ and $x_0q_0 = y$. Since $x, y \in Mw$, we may assume that $p_0, q_0 \in Mw$. (Otherwise replace p_0, q_0 by p_0w, q_0w). Now $x_0p_0u = x_0pu$, so $\alpha = pu(p_0u)^{-1} \in Mu$ satisfies

$$x_0\alpha = x_0 \quad \text{and} \quad \alpha p_0 = \alpha p_0u = puw = p.$$

It then follows from 1.3 that the pair $(\alpha p_0, \alpha q_0) = (p, \alpha q_0)$ satisfies the desired conditions.

1.5. **Definition.** We define a subset $H = H_Q$ of G by

$$H = Q[u] \cap G = \{\alpha \in G \mid (u, \alpha) \in Q\}.$$

We gather a few properties of H. Although most of them follow readily from the definitions, in the interest of completeness we include their proofs.
1.6. Lemma. (a) $G' \subset H$
(b) H is \(\tau \)-closed,
(c) $H = H^{-1}$,
(d) $H\beta = \beta H$ for all $\beta \in G$,
(e) $Hp = Q[p] \cap Gv$ for all $p \in Mv$.

Proof. (a) Let $\alpha \in G'$. Then there exists a net α_i in G which converges to α and to u in the τ-topology. Thus there exist nets in T
\[t_i \to u \quad \text{and} \quad s_i \to u \]
such that
\[\alpha_i t_i \to \alpha, \quad \alpha_i s_i \to u. \]
But then $\alpha_i s_i \to \alpha u = \alpha$; moreover
\[\alpha_i (s_i^{-1} t_i) \to \alpha u = \alpha \quad \text{and} \quad \alpha_i s_i (s_i^{-1} t_i) \to \alpha. \]
Hence $(u, \alpha) \in Q$ and $\alpha \in H$.

(b) Let $q \in H \circ p$. Then there exist $\alpha_i \in H$ and $t_i \in T$ such that
\[t_i \to p, \quad \alpha_i t_i \to q. \]
Now $(u, \alpha_i) \in Q$, so $\lim(\alpha_i t_i) = (p, q) \in Q$. That is, $q \in Q[p]$ and hence $H \circ p \subset Q[p]$. It follows that
\[\text{cls}_T H = (H \circ u) \cap G \subset Q[u] \cap G = H. \]
(c) follows immediately from the fact that Q is symmetric.
(d) follows from 1.3 and the fact that Q is T-invariant.
(e) Using the proof of part (b) we have
\[Hp \subset H \circ p \subset Q[p] \]
for all $p \in M$. If $p \in Mv$, then $Hp = Hpv \subset Mv = Gv$. On the other hand if $q \in Q[p] \cap Gv$, then $(p, q) \in Q$ and hence $(pu, qu) \in Q$ and it follows that
\[h = qu(pu)^{-1} \in H. \]
Thus $q = quv = hpuv = hv = hp \in Hp$.

1.7. Definition. Let $p \in M$ and $v \in J$ with $pv = p$. Recall that the collection
\[\{ \overline{V} \mid V \subset T \text{ with } p \in \overline{V} \} \]
forms a neighborhood base for $p \in \beta T$. We define
\[L(p) = \bigcap_{p \in \overline{V}} \text{cls}_T \text{int}_T \text{cls}_T((M \cap \overline{V})v). \]

We now prove a key technical lemma regarding $L(p)$.

1.8. Lemma. Let $p \in M$. Then
(a) $L(p) \neq \emptyset$,
(b) $G' L(p) = L(p)$,
(c) $L(p) w \subset Q[p] \cap Gw$ for all $w \in J$.

Proof. (a) Let $\emptyset \neq W \subset M$ be open. We consider the left action
\[G \times M \to M \]
\[(\alpha, q) \to \alpha q. \]
A point \(q \in M \) is almost periodic with respect to this action if and only if \(qt \) is almost periodic for every \(t \in T \). Thus the almost periodic points for this action are dense in \(M \), and we can find \(q \in W \) which is almost periodic. Now \(q = qw \) for some \(w \in J \) and

\[
\overline{Gq} = \overline{Gqw} = \overline{Gw}
\]

is minimal with respect to the left action of \(G \). Thus there exists a finite set \(F \subset Gw \) such that

\[
\overline{Gw} \subset F(W \cap \overline{Gw}).
\]

But then

\[
Gw \subset F(W \cap Gw) \subset \text{cl}_T(W \cap Gw).
\]

Hence \(\text{int}_T \text{cl}_T(W \cap Gw) \neq \emptyset \). Since the map \(\beta \to \beta v : Gw \to Gv \) is a \(\tau \)-homeomorphism for any idempotent \(v \in J \), we have

\[
\emptyset \neq (\text{int}_T \text{cl}_T(W \cap Gw))v = \text{int}_T \text{cl}_T(W \cap Gw)v \subset \text{int}_T \text{cl}_T Wv.
\]

The desired result now follows immediately from the finite intersection property.

(b) Let \(v \in J \) with \(pv = p \), and let \(W \subset Gv \) be a \(\tau \)-open subset. We include a proof that \(G' \text{cl}_T(W \cap Gw) = \text{cl}_T W \) although this result is found in [E2]. Let \(\beta \in W \) and \(\alpha \in G' \). Then there exist a net \(\alpha_i \in Gv \) which converges to both \(\alpha v \) and \(v \) in the \(\tau \)-topology. Then \(\alpha_i \beta \) converges to \(\beta \) and hence we may assume that \(\alpha_i \beta \in W \) for all \(i \). But \(\alpha_i \beta \) also converges to \(\alpha \beta \), so \(\alpha \beta \in \text{cl}_T W \). We have shown that

\[
G'W \subset \text{cl}_T W
\]

from which it follows immediately that \(G' \text{cl}_T W = \text{cl}_T W \). Applying this to \(\text{int}_T \text{cl}_T((M \cap \overline{V})v) \) yields the desired result.

(c) First note that for any neighborhood \(N \) of \(p \) in \(M \)

\[
L(p)w \subset \text{cl}_T \text{int}_T \text{cl}_T(\text{Nw}) \subset \text{cl}_T(\text{Nw})
\]

\[
= (\text{Nw} \circ w) \cap Gw \subset ((\text{N} \circ w) \circ w) \cap Gw = (\text{N} \circ w) \cap Gw.
\]

Let \(r \in L(p)w \), so \(r \in N \circ w \) for any neighborhood in \(N \) of \(p \). Thus there exist nets \(p_i \to p \), \(t_i \to w \) with \(p_it_i \to r \). On the other hand \(rt_i \to rw = r \), so \(p, r \in Q \).

1.9. Proposition. Let \(A \) be a \(\tau \)-closed subgroup of \(G \) such that \(AH \) is a group. Then \(AHp = AHL(p) \) for all \(p \in M \).

Proof. \(AHL(p) \) is the union of a collection of cosets of \(AH \), so it suffices to show that \(L(p) \subset AHL(p) \). Let \(v \in J \) with \(pv = p \). Then by 1.8 and 1.6

\[
L(p) = L(p)v \subset Q[p] \cap Gv = Hp.
\]

Let \((X, T) \) be a minimal flow with basepoint \(x_0 \) satisfying \(x_0u = x_0 \). The so-called group of the flow

\[
\mathcal{G}(X, T) = \{ \alpha \in G | x_0 \alpha = x_0 \}.
\]

Our main theorem gives a condition on \(\mathcal{G}(X, T) \) which guarantees that \(Q(X) \) is an equivalence relation.
1.10. **Theorem.** Let \((X, T)\) be a minimal flow with group \(A = \mathcal{F}(X, T)\), and assume that \(H \subset AG'\). Then \(Q\) is an equivalence relation on \(X\).

Proof. Let \((x, y), (y, z) \in Q(X)\). By 1.6 \(G' \subset H\), so the assumption that \(H \subset AG'\) is equivalent to the statement \(AH = AG'\). In particular \(AH\) is a group. We first show, using only the assumption that \(AH\) is a group, that \(z = xh v\) for some \(h \in H\) and \(v \in J\). We then complete the proof (using the fact that \(AH = AG'\)) by showing that \((x, z) \in Q(X)\).

The flow \((X, T)\) is minimal, so there exist \(w, v \in J\) such that \(xw = x\) and \(zv = z\). Thus \((xw, yw) = (x, yw)\) and \((yw, zw)\) are both in \(Q(X)\). Applying 1.4 there exist \(\beta_1, \beta_2, \beta_3 \in Gw\) with

\[
(\beta_1, \beta_1), (\beta_2, \beta_3) \in Q_W \quad \text{and} \quad \beta_1 \beta_1 = x, \beta_2 yw, \beta_3 zw.
\]

We thus have

\[
\beta_2 \beta_1^{-1}, \beta_3 \beta_2^{-1} \in Q[\omega] \cap Gw = Hw.
\]

The fact that \(AH\) and hence \(AHw\) are groups now implies that \(\beta_3 \beta_1^{-1} \in AHw\) and hence \(\beta_3 \in AH\beta_1 = Ab_1 Hw\). It follows that there exists \(h \in H\) with \(x_0 \beta_3 = x_0 \beta_1 h w\). Then

\[
z = zv = z w v = x_0 \beta_3 v = x_0 \beta_1 h w v = x h v.
\]

To complete the proof we observe that

\[
v = uv \in (\beta_1^{-1} AH \beta_1) v = (\beta_1^{-1} A \beta_1) H v = (\beta_1^{-1} A \beta_1) H L (hv) = (\beta_1^{-1} A \beta_1) L (hv) = (\beta_1^{-1} A \beta_1) G L (hv) = (\beta_1^{-1} A \beta_1) L (hv).
\]

Thus

\[
u = vu \in (\beta_1^{-1} A \beta_1) (L (hv) u) \subset (\beta_1^{-1} A \beta_1) Q [hv],
\]

and hence

\[
(\beta_1^{-1} A \beta_1, hv) \in Q
\]

for some \(\beta \in A\). We then have \((\beta_1, \beta_1 h v) \in Q\) by 1.3, and

\[
(x, z) = (x_0 \beta_1, x h v) = (x_0 \beta_1, x_0 \beta_1 h v) \in Q(X)
\]

as desired.

We shall see that the converse of 1.10 is false, but first we deduce some interesting consequences.

1.11. **Proposition.** Let \(A\) be a \(\tau\)-closed subgroup of \(G\). Then the \(\tau\)-closed subgroup generated by \(AH\) is \(AE\) where \(E\) is the group of the universal equicontinuous minimal flow.

Proof. Let \(B\) be the \(\tau\)-closed subgroup of \(G\) generated by \(AH\). Since \(Q\) is contained in the equicontinuous structure relation on \(M, H \subset E\) and hence \(B \subset AE\). There exists a minimal flow \((X, T)\) such that \(\mathcal{F}(X, T) = B\) (see [E2]). Now \(H \subset B = BG'\), so \(Q(X)\) is an equivalence relation by 1.10. Thus \(Q(X)\) is the equicontinuous structure relation on \(X\) (see [A]). In other words the maximal equicontinuous factor of \(X\) is given by

\[
(*) \quad X_{eq} = X / Q(X).
\]
The group $\mathcal{G}(X_{\text{eq}}, T) = BE$. On the other hand it follows from (*) that
\[
\mathcal{G}(X_{\text{eq}}, T) = \{ \alpha \in G \mid (x_0, x_0\alpha) \in Q(X) \}
\]
\[
= \{ \alpha \in G \mid x_0\alpha = x_0h \text{ for some } h \in H \}
\]
\[
= BH = B.
\]
Hence $BE = B$, so $AE \subset B$.

In the following proposition, (X, T) is a minimal flow with basepoint $x_0 = x_0u$ and $A = \mathcal{G}(X, T)$. $P(X)$ denotes the proximal relation on X, and $S(X)$ denotes the equicontinuous structure relation on X.

1.12. **Proposition.** The following are equivalent:

1. AH is a group,
2. $AH = AE$,
3. $S(X) = Q(X)P(X)$,
4. $Q(X)P(X)$ is a closed equivalence relation.

Proof. (1) \Rightarrow (2) is an immediate consequence of Proposition 1.11, and (2) \Rightarrow (1) is obvious.

(3) \Rightarrow (2) It is sufficient to show that $E \subset AH$. Let $e \in E$. Then $(x_0, x_0e) \in S(X)$, so $(x_0, y) \in Q(X)$ and $(y, x_0e) \in P(X)$ for some $y \in X$. Hence there exists a minimal right ideal $I \subset \beta T$ such that

\[yr = x_0er \quad \text{for all } r \in I. \]

Let $w \in I$ be an idempotent such that $uw = u$ and $wu = w$. (For a proof that such an idempotent exists see [E2].) Then

\[(x_0, x_0e) = (x_0u, x_0ueu) = (x_0uw, x_0ueuw) \]
\[= (x_0w, x_0ew) = (x_0w, yw) \in Q(X), \]

and it follows that $e \in AH$.

(2) \Rightarrow (3) Clearly $Q(X)P(X) \subset S(X)$. Suppose that $(x_0, y_0) \in S(X)$ and that $v \in \beta T$ is a minimal idempotent with $y_0v = y_0$. Then

\[y_0u = x_0e \quad \text{for some } e \in E; \]

and since we are assuming that $AH = AE$, there exists $h \in H$ with $x_0e = x_0h$.

Now

\[(x_0, x_0h) \in Q(X) \quad \text{and} \quad (x_0h, x_0hv) \in P(X), \]

so $(x_0, y_0) = (x_0, y_0uv) = (x_0, x_0hv) \in Q(X)P(X)$. In particular note that if $y_0u = y_0$ we have shown that $(x_0, y_0) \in Q(X)$.

Now suppose that $(x, y) \in S(X)$ with $xw = x$ where $w \in \beta T$ is a minimal idempotent. Let $\alpha \in G$ such that $x\alpha = x_0$. Then as was noted above we have

\[(x_0, y\alpha) = (x\alpha, y\alpha) \in Q(X). \]

Thus

\[(x, yw) = (x_0\alpha^{-1}w, y\alpha \alpha^{-1}w) \in Q(X). \]

Since $(yw, y) \in P(X)$, it follows that $(x, y) \in Q(X)P(X)$.

(4) \Rightarrow (3) The relation $Q(X)P(X)$ is T-invariant, contains $Q(X)$, is contained in $S(X)$, and so must be $S(X)$.

(3) \Rightarrow (4) is obvious.
1.13. Remarks. (1) In view of 1.11, 1.10 is equivalent to: $E \subseteq AG'$ implies $Q(X)$ is an equivalence relation. Since this statement involves only the group A of the flow, it is natural to ask whether $Q(X)$ being an equivalence relation is a "group condition"; i.e., given that $\mathcal{F}(X, T) = \mathcal{F}(Y, T)$ and that $Q(X)$ is an equivalence relation does it follow that $Q(Y)$ is one also?

(2) In [E3] it is shown that when the almost periodic points are dense in $X \times X$, $E \subseteq AG'$. Thus 1.10 generalizes the result that $Q(X)$ is an equivalence relation when the almost periodic points are dense in $X \times X$. In particular, if (X, T) is point distal, then the almost periodic points are dense in $X \times X$ and it follows from 1.10 that Q is an equivalence relation for any proximal extension of (X, T).

(3) The proof of the crucial lemma 1.8 raises the question: Is every $p \in M$ an almost periodic point of the flow (G, M), and if not why not?

The following lemma follows from a combination of Proposition 14.14 of [E2] and Proposition 3.10 of [EGS]. In the interest of completeness we include an outline of a (different) proof.

Proof. First note that $G' \subseteq H \subseteq E$ and $D \subseteq E$ (because the universal equicontinuous flow is a factor of the universal distal flow). Thus $G'D \subseteq E$. Let B be any τ-closed normal subgroup of G which contains $G'D$. Then the map $t \mapsto utu^{-1}: T \to G/B$ is a homomorphism. Indeed G/B is a compact topological group, so $(G/B, T)$ is an equicontinuous flow. Applying this to $B = G'D$ and $B = E$ we obtain $G/G'D \to G/E$, a homomorphism of equicontinuous flows. But G/E is the maximal equicontinuous flow, so $G'D = E$.

1.15. Corollary. Let (X, T) be a minimal flow for which the proximal relation is closed. Then $Q(X)$ is an equivalence relation.

Proof. Since the proximal relation is closed, it must be an equivalence relation (see [A]). Dividing out by this relation we see that (X, T) is a proximal extension of a distal flow. Hence $D \subseteq \mathcal{F}(X, T) = A$, which implies (by 1.14) that $H \subseteq E = DG' \subseteq AG'$. It then follows from 1.10 that $Q(X)$ is an equivalence relation.

We now give an example which shows that the converse of Theorem 1.10 is false.

1.16. Example. Let $X = S^{n-1}$ and $T = SL(n, \mathbb{R})$ with $n \geq 2$. We consider the action

$$X \times T \to X,$$

$$(x, t) \mapsto \frac{x}{\|x/t\|}.$$ Then Q is an equivalence relation on X; in fact $(x, y) \in Q(X)$ for all $x, y \in X$. Moreover van der Waerden (see [W]) shows that the constants are the only almost periodic functions on T when the latter is provided with the discrete topology; hence $E = G$ in this case. On the other hand the identification of antipodal points gives a \mathbb{Z}_2 group extension:

$$X = S^{n-1} \to \mathbb{R}P^n.$$
But \((\mathbb{RP}^n, T)\) is proximal, so \(\mathcal{G}(\mathbb{RP}^n, T) = G\). Therefore \(G/\mathcal{G}(X, T) \cong \mathbb{Z}_2\) and \(A = \mathcal{G}(X, T)\) is of index 2 in \(G\). It follows that \(A\) is \(\tau\)-clopen and \(G' \subset A \neq G\). Now the fact that \(Q(X) = X \times X\) implies that \(AH = G\). Hence \(H \not\subset A = AG'\).

References

Department of Mathematics, University of Maryland, College Park, Maryland 20742

Department of Mathematics, Beloit College, Beloit, Wisconsin 53511

Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455