Interpretation of Lavrentiev phenomenon by relaxation: the higher order case
HTML articles powered by AMS MathViewer
- by Marino Belloni
- Trans. Amer. Math. Soc. 347 (1995), 2011-2023
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290714-9
- PDF | Request permission
Abstract:
We consider integral functionals of the calculus of variations of the form \[ F(u) = \int \limits _0^1 {f(x,u,u’, \ldots ,{u^{(n)}})dx} \] defined for $u \in {W^{n,\infty }}(0,1)$, and we show that the relaxed functional $F$ with respect to the weak $W_{{\text {loc}}}^{n,1}(0,1)$ convergence can be written as \[ \overline F (u) = \int \limits _0^1 {f(x,u,u’, \ldots ,{u^{(n)}})dx + L(u),} \] where the additional term $L(u)$, the Lavrentiev Gap, is explicitly identified in terms of $F$.References
- John M. Ball and Victor J. Mizel, Singular minimizers for regular one-dimensional problems in the calculus of variations, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 143–146. MR 741726, DOI 10.1090/S0273-0979-1984-15241-8
- J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), no. 4, 325–388. MR 801585, DOI 10.1007/BF00276295 M. Belloni, Ph.D. Thesis (in preparation).
- Giuseppe Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics Series, vol. 207, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1020296
- Giuseppe Buttazzo and Victor J. Mizel, Interpretation of the Lavrentiev phenomenon by relaxation, J. Funct. Anal. 110 (1992), no. 2, 434–460. MR 1194993, DOI 10.1016/0022-1236(92)90038-K
- L. Cesari and T. S. Angell, On the Lavrentiev phenomenon, Calcolo 22 (1985), no. 1, 17–29. MR 817037, DOI 10.1007/BF02576198 C. W. Cheng, The Lavrentiev phenomenon and its applications in nonlinear elasticity, Ph.D. Thesis, Carnegie Mellon Univ., Pittsburgh, 1993.
- Chih Wen Cheng and Victor J. Mizel, On the Lavrentiev phenomenon for autonomous second-order integrands, Arch. Rational Mech. Anal. 126 (1994), no. 1, 21–33. MR 1268047, DOI 10.1007/BF00375694
- F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 289 (1985), no. 1, 73–98. MR 779053, DOI 10.1090/S0002-9947-1985-0779053-3
- A. C. Heinricher and V. J. Mizel, The Lavrentiev phenomenon for invariant variational problems, Arch. Rational Mech. Anal. 102 (1988), no. 1, 57–93. MR 938384, DOI 10.1007/BF00250924
- Arthur C. Heinricher and Victor J. Mizel, A new example of the Lavrentiev phenomenon, SIAM J. Control Optim. 26 (1988), no. 6, 1490–1503. MR 969341, DOI 10.1137/0326087 M. Lavrentiev, Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl. 4 (1926), 107-124. B. Manià, Sopra un esempio di Lavrentieff, Boll. Un. Mat. Ital. 13 (1934), 146-153.
- M. Marcus and V. J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 338765, DOI 10.1007/BF00251378
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2011-2023
- MSC: Primary 49J45; Secondary 49J05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290714-9
- MathSciNet review: 1290714