Singular Jacobi forms
HTML articles powered by AMS MathViewer
- by Jae-Hyun Yang
- Trans. Amer. Math. Soc. 347 (1995), 2041-2049
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290733-2
- PDF | Request permission
Abstract:
We introduce the differential operator ${M_{g,h,\mathcal {M}}}$ characterizing singular Jacobi forms. We also characterize singular Jacobi forms by the weight of the associated rational representation of the general linear group. And we provide eigenfunctions of the differential operator ${M_{g,h,\mathcal {M}}}$.References
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Hans Maass, Siegel’s modular forms and Dirichlet series, Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin-New York, 1971. Dedicated to the last great representative of a passing epoch. Carl Ludwig Siegel on the occasion of his seventy-fifth birthday. MR 0344198, DOI 10.1007/BFb0058625
- Rainer Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes, J. Reine Angew. Math. 343 (1983), 184–202 (German). MR 705885, DOI 10.1515/crll.1983.343.184
- J.-H. Yang, The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135–146. MR 1227870, DOI 10.1007/BF02941338
- C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191–224. MR 1049896, DOI 10.1007/BF02942329
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2041-2049
- MSC: Primary 11F55; Secondary 11F46, 11F60
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290733-2
- MathSciNet review: 1290733