$L^ p$ theory of differential forms on manifolds
HTML articles powered by AMS MathViewer
- by Chad Scott
- Trans. Amer. Math. Soc. 347 (1995), 2075-2096
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297538-7
- PDF | Request permission
Abstract:
In this paper, we establish a Hodge-type decomposition for the ${L^p}$ space of differential forms on closed (i.e., compact, oriented, smooth) Riemannian manifolds. Critical to the proof of this result is establishing an ${L^p}$ estimate which contains, as a special case, the ${L^2}$ result referred to by Morrey as Gaffney’s inequality. This inequality helps us show the equivalence of the usual definition of Sobolev space with a more geometric formulation which we provide in the case of differential forms on manifolds. We also prove the ${L^p}$ boundedness of Green’s operator which we use in developing the ${L^p}$ theory of the Hodge decomposition. For the calculus of variations, we rigorously verify that the spaces of exact and coexact forms are closed in the ${L^p}$ norm. For nonlinear analysis, we demonstrate the existence and uniqueness of a solution to the $A$-harmonic equation.References
- Henri Cartan, Differential forms, Houghton Mifflin Co., Boston, Mass., 1970. Translated from the French. MR 0267477 J.B. Conway, A course in functional analysis (2nd ed.), Macmillan, New York, 1988.
- P. E. Conner, The Neumann’s problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc. 20 (1956), 56. MR 78467
- G. F. D. Duff, Differential forms in manifolds with boundary, Ann. of Math. (2) 56 (1952), 115–127. MR 48136, DOI 10.2307/1969770
- Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR 990890, DOI 10.1007/978-3-642-51440-1
- S. K. Donaldson and D. P. Sullivan, Quasiconformal $4$-manifolds, Acta Math. 163 (1989), no. 3-4, 181–252. MR 1032074, DOI 10.1007/BF02392736
- G. F. D. Duff and D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. (2) 56 (1952), 128–156. MR 48137, DOI 10.2307/1969771
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Harley Flanders, Differential forms with applications to the physical sciences, 2nd ed., Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1989. MR 1034244
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0 Piotr Hajlasz, Note on Meyers-Serrin’s Theorem, Expositiones Math. (to appear).
- Tadeusz Iwaniec, $p$-harmonic tensors and quasiregular mappings, Ann. of Math. (2) 136 (1992), no. 3, 589–624. MR 1189867, DOI 10.2307/2946602
- Tadeusz Iwaniec and Adam Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. 125 (1993), no. 1, 25–79. MR 1241286, DOI 10.1007/BF00411477
- Tadeusz Iwaniec and Gaven Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), no. 1, 29–81. MR 1208562, DOI 10.1007/BF02392454
- Kunihiko Kodaira, Harmonic fields in Riemannian manifolds (generalized potential theory), Ann. of Math. (2) 50 (1949), 587–665. MR 31148, DOI 10.2307/1969552
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511, DOI 10.1007/978-3-540-69952-1
- Marston Morse, Global variational analysis, Mathematical Notes, No. 16, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1976. Weierstrass integrals on a Riemannian manifold. MR 0494242 Sunil Mukhi and N. Mukunda, Introduction to topology, differential geometry and group theory for physicists, Wiley Eastern Limited, New Delhi, 1990.
- Raghavan Narasimhan, Analysis on real and complex manifolds, Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968. MR 0251745
- Joel W. Robbin, Robert C. Rogers, and Blake Temple, On weak continuity and the Hodge decomposition, Trans. Amer. Math. Soc. 303 (1987), no. 2, 609–618. MR 902788, DOI 10.1090/S0002-9947-1987-0902788-8
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 C.H. Scott, ${L^p}$ theory of differential forms on manifolds, Ph.D. Thesis, Mathematics Department, Syracuse University, June, 1993.
- L. M. Sibner and R. J. Sibner, A non-linear Hodge-de-Rham theorem, Acta Math. 125 (1970), 57–73. MR 281231, DOI 10.1007/BF02392330
- K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), no. 3-4, 219–240. MR 474389, DOI 10.1007/BF02392316
- Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR 722297, DOI 10.1007/978-1-4757-1799-0 Eberhard Zeidler, Nonlinear functional analysis and its applications, Springer-Verlag, New York, 1990.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2075-2096
- MSC: Primary 58A14; Secondary 58G03
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297538-7
- MathSciNet review: 1297538